Herbal Medicines in Pregnancy & Lactation

An Evidence-Based Approach

Edward Mills
Jean-Jacques Dugoua
Dan Perri
Gideon Koren
Herbal Medicines in Pregnancy and Lactation
An Evidence-Based Approach

Edward Mills DPh MSc (Oxon)
Director, Division of Clinical Epidemiology
Canadian College of Naturopathic Medicine
North York, Ontario, Canada

Jean-Jacques Duguoa MSc (cand.) ND
Naturopathic Doctor
Toronto Western Hospital
Assistant Professor
Division of Clinical Epidemiology
Canadian College of Naturopathic Medicine
North York, Ontario, Canada

Dan Perri BScPharm MD MS c
Clinical Pharmacology Fellow
University of Toronto
Toronto, Ontario, Canada

Gideon Koren MD FACMT FRCP
Director of Motherisk
Professor of Medicine, Pediatrics and Pharmacology
University of Toronto
Toronto, Ontario, Canada

With a contribution from
Paul Richard Saunders PhD ND DHANP
CONTENTS

Preface v
Chapter 1 Traditional botanical medicines 1
Chapter 2 Pharmacognosy – the science of natural source medicines 9
Chapter 3 Methodology 21
Chapter 4 Herbal medicines 23
Chapter 5 Vitamins 301
Chapter 6 Supplements 325
Index 349
Exposures to over-the-counter products are frequent in pregnant women. Perhaps this is a paradoxical response to the decreased use of prescribed medications during pregnancy for fear of teratogenicity. For many women, natural health products such as herbal medicines or supplements may seem a reasonable alternative as the lay media often portrays natural medicines as safe. While the true incidence of natural product use in pregnancy is not known, some studies suggest that as high as sixty percent of pregnant women use natural therapies including herbal medicines either during pregnancy or while planning. Pregnant women often consider the use of natural products such as peppermint tea or ginger to help with symptoms of pregnancy such as nausea and vomiting. In one study of midwives practicing in North Carolina, half of the respondents admitted to recommending herbal medicines to their patients for pregnancy related conditions. Further to this intended use, it must be remembered that nearly half of all pregnancies are unplanned and unexpected exposures to medicines and supplements in the first trimester are not rare.

Despite the prevalent use of natural health products by pregnant women, there is very little published evidence with regards to the safety and efficacy of natural health products during pregnancy and lactation. Many modern and classic texts warn against the use of natural product supplementation during pregnancy or lactation for up to one-third of the products listed in their monographs. However, most resources provide little information on the data used to evaluate reproductive toxicity apart from reports of historical use of herbs as abortifacients or uterine stimulants or animal data of genotoxicity or teratogenicity. Data on efficacy during pregnancy is similarly scarce from most texts.

To our knowledge, ours is the first text that aims to specifically address the lack of data of natural health product use in pregnancy and lactation. While it is not an exhaustive compendium of available supplements, it is a comprehensive listing of common herbs, vitamins and supplements used by pregnant women. Drawing on all available studies obtained through meta-analytic techniques, we have graded the quality of evidence on natural product safety during pregnancy and breastfeeding. Statements in traditional texts such as ‘use of this herbal product should occur only after careful assessment of the benefits and risks’ need clarification with up-to-date evidence from the medical literature. Busy healthcare providers need to have access to quick and reliable information they can use to help address patient concerns with regards to natural health product use in pregnancy or lactation. We hope that this text will be received as a valuable resource for all clinicians who treat pregnant patients. As natural
health supplements continue to gain popularity, we anticipate that the utility for a text such as this will grow too.

Jean-Jacques Duguoa
Edward Mills
Dan Perri
Gideon Koren

References
Chapter 1
TRADITIONAL BOTANICAL MEDICINES
Paul Richard Saunders

Introduction
Pregnancy and subsequent lactation have been an essential part of human existence for millennia, but unfortunately the experience has not been easy for all women. Some of our earliest medicines were plants used to address the difficulties and complications of these biologic processes and to better prepare the expectant mother for pregnancy, delivery, and lactation. In many part of the world women still use herbal medicines even when attended by Western medicine.1-2 This short review from an historical perspective will first examine some of the botanicals that have been used during pregnancy and delivery and then during lactation. Reference will also be made to some of the scientific literature on these botanical medicines.

Contraception and pregnancy
Although conception is a problem for some women, a more common problem is contraception. In rural Mindanao (the Philippines) women still drink kamias and other herbal preparations rather than use oral contraceptives.2 Quisumbing's thorough study of Philippine medicinal plants identified over 60 plants used as abortifacients and over 130 plants used as emmenagogues.3 Of interest is Kibatalia blancoi and K. gitingesis whose leaf and bark may have progesterone-like effects.4,5 A 1995–1996 reproductive health survey of 6465 Paraguayan women of reproductive age found they were most familiar (88%) with yuyos, a variety of herbs usually drunk as a tea daily to prevent pregnancy.6 Studies in India to find traditional, effective contraceptives have focused on Hibiscus rosa-sinensis, Rudrapushpaka, Embelia ribes, Daucus carota, Butea monosperma, Sapindus trifoliatus, Mentha arvensis, Ferula jaeschkeana, and several others because of their anti-implantation activity.7 Herbs with potential as a male contraceptive are Gossypium herbaceum and Tripterygium wilfordii.7

In traditional Chinese medicine, a core of 10–20 herbs is used in pregnancy.8 A review of traditional Chinese materia medica would, based on clinical tongue and pulse diagnosis, include plants used for liver cleansing, blood regulating, qi tonics, yin tonics and warming.9 Striga asiatica is one herb being studied as a contraceptive.10 Moerman has published an exhaustive description of the plants used by native North Americans; abortifacients number over 100 and female gynecological aids nearly 350.11 A large number of these plants came to the knowledge of European settlers by inquiry and observation with subsequent clinical use in patients. When the outcome was repeatedly successful this was recorded and the details of its use refined from repeated use by Eclectic physicians who
differentiated between more effective and less well studied botanical medicines in *King’s American Dispensatory*.12

Vitex agnus-castus has over a 2000-year history in female menstrual regulation including infertility. It has also been shown to have beneficial effects for lactation, making it in a sense a botanical alpha and omega of pregnancy and lactation.13–15 Once the woman was pregnant *Rubus idaeus* leaf was used by the Cherokee for labor pains and by the Cree and Cherokee to slow uterine bleeding; benefits were attributed to its astringent and tannin properties.16,17 It is a well-known partus preparator or parturient taken during pregnancy to tonify the uterus, maintain pregnancy and ease delivery.18,19

One complication of pregnancy is threatened miscarriage. A well-known herbal formula that prevents this is *Viburnum prunifolium*, *Leonurus cardiaca*, and *Mitchella repens*.20 *Viburnum prunifolium* was used by the Delaware and Micmac to strengthen and tone the uterus during pregnancy, and by the Eclectics to calm uterine colic, for threatened miscarriage and painful uterine contractions.21,22 *L. cardiaca* was regarded as a sedative for female nervousness and hysteria, and for general female complaints by the Cherokee, Delaware, Iroquois, Micmac, Mohegan, and Shinnecock as well as by the Eclectics.23,24 *M. repens* was used by the Cherokee, Delaware, Iroquois and Menominee for a variety of complaints regarding the uterus.25 The Eclectics considered it one of the most important herbs for successful pregnancy, to prevent miscarriage, throughout the pregnancy for complications, and in the last weeks to ease delivery.26,27 This botanical formula was designed to address the uterine problems, anxiety, nervousness, and pain that could accompany a possible miscarriage.

As the pregnancy neared completion a partus preparator was often given to the expectant woman in the last 3–6 weeks to prepare the uterus for delivery and reduce the pain of delivery. Botanicals drawn upon to affect the uterine circulation and musculature included *M. repens*, *V. prunifolium*, *Caulophyllum thalictroides*, *Actea (Cimicifuga) racemosa*, *Aralia nudicaulis*, and for nervines included those such as *Leonurus cardiaca*, *Nepeta cataria*, and *Gelsemium sempervirens*.26,28,29 The dose of *C. thalictroides* was minimal before and during labor to avoid fetal distress.29,30 Its Native American use related to pregnancy and labor included the Cherokee, Menominee, Ojibwa, and Potawatomi.31 *G. sempervirens* was used to calm the patient and help dilate the os in stalled labor.26,27

The preferred botanical to address post-labor pains was *G. sempervirens*.32,33 Dose and timing were critical as administration too early or too frequent could slow the labor process and too much after labor could make the woman too drowsy to look after her newborn infant.32

Hemorrhage was the first severe complication after delivery as it could not only cause considerable blood loss and profound anemia, but also lead to death if unchecked. *Cinnamomum zeylanicum* was a preferred anti-hemorrhagic.28,34,35 It also provided some anti-microbial protection from puerperal fever, an important complication arising from infection contracted during or after labor that took the life of many new mothers. *C. zeylanicum* is still used
in traditional Chinese medicine for this type of fever. Other anti-hemorrhagics included *Capsella bursa-pastoris* and *Geranium maculatum* whereas botanicals preferred for post-partum anti-fever were *Veratrum viride* and *Atropa belladonna*.

In traditional Chinese medicine *Angelica sinensis* supplements blood, tones the uterus and is often used throughout the pregnancy. Its stimulating or inhibiting effect on the uterus is regulated by how long it is decocted in a larger formula. In contrast, Western pharmacologists label it an abortifacient and strongly recommend against its use in pregnancy. *Rehmannia glutinosa* is a nutritive tonic that nourishes yin and blood and can be of benefit in bleeding, *Paeonia lactiflora* can disperse blood thus controlling pain, and *Cyperus rotundus* can control bleeding as well as antepartum and post-partum headache pain. Three additional traditional Chinese medicinal herbs of note are *Fritillaria cirrhosa* for regulating uterine contractions and blood loss after labor, *Poncirus trifoliata* to relieve pain and regulate uterine contractions, and *Codonopsis pilosula* to build qi, address weakness, fatigue, and loss of appetite—symptoms often present in the first trimester, near the end of pregnancy, or after delivery.

An indirect use of traditional Chinese medicinal herbs is moxibustion (charcoal from *Artemisia argyi* and related species). In a randomized human study it increased fetal activity during treatment and cephalic presentation after treatment and at delivery. A study of recurrent spontaneous abortion using the traditional Chinese medicinal formula zhibai dihuang, with herbs to remove evil heat, dampness, replenish blood and activate circulation, altered anti-ABO group antibodies and yielded a high number of normal deliveries.

Lactation

Mother’s breast milk is still regarded as best and in some settings is the infant’s only chance for survival. A study of new mothers attending breast-feeding clinics in Canada found up to 15% reported insufficient milk supply. No doubt this has been a problem in some women, leading to efforts to identify herbal remedies across a diversity of cultures. Brückner has reviewed the herbal drugs most commonly used in Europe. Bingel and Farnsworth have produced the most thorough review to date, identifying over 400 plants that have been used ethnomedically and recorded in the literature as galactagogues. Not even 10% of the plants have been studied scientifically so their individual mechanism and effectiveness as galactagogues is generally unknown.

Breast pain, swelling, hardness, and even mastitis have been treated with *Phytolacca americana*, *Ricinus communis*, and *M. repens*, all of which can be applied topically before or between breast feeding. They must be cleansed from the breast prior to nursing. A possible mechanism is their ability to facilitate flow from the gland through the nipple and to the infant.

In Central America, Mayan and other native women use a variety of herbs to increase breast milk production. *Coffea arabica* and *Camellia sinensis* are two diuretics that contain caffeine, and caffeine and theophylline, respectively, and
have been used – and shown experimentally – to promote lactation.47 Caffeine in some infants can lead to insomnia and colic. \textit{Euphorbia lancifolia} has been used by humans for centuries and may also increase milk production in cows.49

Emotions such as fear and anxiety may reduce the release of milk suggesting a role for herbs that reduce the psychological and physiological effects of emotions.47 \textit{Lactuca virosa} and \textit{L. sativa} produce a dried sap used for sedation, whereas \textit{L. biennis} has been used to ease breast pain and promote lactation.50,51 \textit{Anethum graveolens} is a sedative that has been used with some benefit.47,52 Sedative plants often contain essential oils, compounds that dilate blood vessels, relax muscles, and enhance sleep. Noteworthy are \textit{Origanum vulgare} employed in fomentations, \textit{Lavandula officinal}, \textit{L. angustifolia}, and \textit{L. vera} that are added to baths or applied locally for pain, and \textit{Mentha piperita}, \textit{M. viridis}, and \textit{Nepeta cataria} taken as an infusion.53

Beer, a well-known galactagogue, contains \textit{Humulus lupulus}, noted for both its sedative action and estrogenic effect on breast tissue, and \textit{Hordeum vulgare}, reputed to be galactogenic and to cause prolactin release.47,54 \textit{H. lupulus} can be applied to painful swellings such as of the breast, but is generally empirically contraindicated in depression.55,56

Other galactagogues of note include \textit{Urtica dioica} and \textit{U. urens} which can be applied topically or taken internally.57 \textit{Galega officinalis} has enjoyed more popularity in its native Europe than North America for it ability to stimulate milk production.58,59 \textit{Trigonella foenum-graecum} has historically been widely used in Europe and North Africa and some of the animal data are positive.60,61 \textit{Salvia officinalis} is used more as a lactation regulator, most often to reduce milk production and pain when the baby has been weaned.62,63

Ayurveda, the traditional medicine of India, has yielded such galactagogues as \textit{Rauwolfia serpentina}, \textit{R. oreogiton}, and \textit{R. volkensii}, whose use is supported by endocrinology and findings from clinical trials that have focused on its alkaloid content. Reserpine, a dopamine-depleting agent can produce galactorrhea in women and decrease anxiety, and several other alkaloids have similar activity.47 There is positive data for \textit{Leptadenia reticulata} as well.47 \textit{Asparagus racemosus} was examined in a clinical trial where it was used in a herbal formula with six other herbs, but the results were not significant.64 Current and future research could increase our knowledge about other herbs used traditionally in rural India.65

Traditional Chinese medicinal botanicals for enhancing milk production in humans include \textit{Astragalus membranaceus}, \textit{Taraxacum mongolicum}, \textit{Tetrapanax papyrifer}, \textit{Liquidambar taiwaniensia}, and \textit{Ligusticum chuaniong} (\textit{L. striatum}) to name a few.66 In general these are qi, yin, and/or blood tonics.

Summary

The use of medicinal plants to address infertility, maintain pregnancy, ease the birthing process, and aid in milk production or its cessation has been identified in many cultures, several of whom have complex medical systems.1,2,6,9,11,65,67 Over 400 plants have been identified as ethnomedically affecting lactation.
Unfortunately, modern science has not maintained pace in the study of the mechanisms and relative benefit or potential harm of these plants. Women from many cultural backgrounds continue to use plants despite the presence of modern medications. More detailed study in this area could yield new information about mammalian reproductive endocrinology and physiology, plant pharmacognosy and constituent physiology, and identify the larger potential of at least some of these plants.

References
6 Herbal medicines

45. MacIntosh HC. What is the pharmacological basis for the action of herbs that promote lactation and how can they best be utilized Part I. Can J Herbalism 2003; XXIV:15–19, 36.

61. MacIntosh HC. What is the pharmacological basis for the action of herbs that promote lactation and how can they best be utilized part II. Can J Herbalism 2003; XXV:15–11, 38.

65. Anon. Learning from India’s traditional birth attendants, the dais. Arrows Change. 199; 5:3.
8 Herbal medicines

Chapter 2

PHARMACOGNOSY – THE SCIENCE OF NATURAL SOURCE MEDICINES

The study of medicinal plants and their properties is called pharmacognosy. This science has led to the development of many drugs in use today including aspirin (the basic salicylate structure was discovered from the white willow while aspirin was synthesized from meadowsweet), opioids (originally from opium poppies), the birth control pill (synthesized from steroid structures found in a wild Mexican yam), and chemotherapeutic agents like vincristine and vinblastine (from Madagascar periwinkle) or taxol (from the Pacific yew tree).

Today, herbal medicine is big business. However, there is much confusion about what herbal medicine is and is not. While pharmacognosy is a science that deals with the discovery of medicines from natural substances, it is certainly not the same as herbalism. According to the American Society of Pharmacognosy, its scope includes ‘the study of the physical, chemical, biochemical and biological properties of drugs, drug substances, or potential drugs or drug substances of natural origin as well as the search for new drugs from natural sources. Research problems in pharmacognosy include studies in the areas of phytochemistry, microbial chemistry, biosynthesis, biotransformation, chemotaxonomy, and other biological and chemical sciences’. The term herbalism refers to a folk and traditional medicinal practice based on the use of plants and plant extracts. In essence, herbalism is the practice of herb-based care and pharmacognosy is the scientific study of herbs with medicinal purposes. Within the practice of herbalism there are a variety of different traditions including, for example, traditional Chinese medicine or the Indian ayurvedic medicine. Each of these has a unique paradigm on health, illness, and disease. Unlike pharmacognosists, herbalists are not particularly interested in specific active constituents found within a plant. Instead, they focus on the healing properties of the plant or part of plant (seed, root, leaf, etc.) and how it will benefit the body to heal itself. Although non-herbalists may also use herbal medicines in their clinical practice, they likely do so under a different health paradigm. Homeopaths also have a holistic approach to health, but their material medica uses a ‘like cures like’ philosophy of treating patients with ultra-dilute formulations unlikely to contain significant (if any) ‘active’ ingredient. Homeopathy, then, is unlike herbal medicine, herbalism, or pharmacognosy. It has not been included in this text.

The current trend in natural product use follows many different health paradigms – some are popular because of their use in traditional Chinese medicine or Ayurveda, some from the widespread use of herbal medicine in Europe, and some due to increasing published studies on natural medicines, somewhat representative of the renewed interest in pharmacognosy. So, irrespective of the
particular health paradigm from which the natural health products summarized in this text are derived, we will adopt the pharmacology perspective (or perhaps in this case, pharmacognosy would be the more accurate term). As such, individual constituents (chemical entities) of each natural product are discussed with regard to their pharmacologic or toxicologic properties. Since this likely represents a new vocabulary for most healthcare professionals, some common classes of herbal constituents are described below.

Glossary of terms used in natural product pharmacology (pharmacognosy)

A true understanding of the nature of plant constituents demands a solid foundation in organic chemistry since many constituent names are based on the compound’s chemical structure. An explanation of the structure–function relationship of plant constituents is beyond the scope of this text. Whenever possible, chemical constituents will be described here by their pharmacologic function or unique physicochemical properties rather than their structural forms. However, more often than not, the constituents derived from plants are grouped according to their structural similarity rather than functional effect. In these cases, the chemistry is simplified such that undergraduate level organic chemistry knowledge will suffice. Further details can be found in the texts recommended at the end of this chapter.

Alkaloids are chemicals formed from amino acids. True alkaloids contain a heterocyclic ring structure containing nitrogen while proto alkaloids do not have the nitrogen in the ring. Pseudo-alkaloids are related compounds that contain a heterocyclic ring structure containing nitrogen but are not derived from amino acids. Alkaloids are highly reactive substances with biologic activity in low doses. In plants, most alkaloids (which are bases) form salts with acids. Alkaloids may be monocyclic, bicyclic, or polycyclic. Alkaloids may occur as pyridine-piperidines, tropanes, quinolines, isoquinolines, indoles, imidazoles, steroidal, purine bases, and alkaloidal amines. Drug examples of alkaloids include atropine, ipecac, nicotine, colchicine, caffeine, theophylline, quinine, vinblastine, tubocurarine, reserpine, yohimbine, morphine, and the ergot alkaloids. They are usually bitter-tasting white solids (although nicotine is a brown liquid). Apart from their similar structural roots, alkaloids are not related and thus do not necessarily share any pharmacologic properties.

Anthocyanins are plant pigments that strongly absorb in the ultraviolet (UV) spectrum and thus have a role in attracting insects (by carnivorous plants or for pollination purposes) as well as UV protection. Plants containing anthocyanins can be of a variety of colors. They are usually red, purple, or blue but depending on their oxidation state may even be yellow or colorless. Over 300 different anthocyanins have been identified in plants. They are one class of flavonoid compounds that are very popular today due to their possible health benefits as antioxidants. The most popular supplements are grape seed extract, pine bark extract, and green tea. Anthocyanin-containing plants have also been used historically as anti-inflammatories and for enhancing vision. Cranberries, bilber-
ries, apples, eggplant, and radish all contain anthocyanins. Anthocyanins also contribute to the color changes of leaves in autumn.

![Anthocyanin Structure](image)

Figure 2.1 Basic structure of anthocyanins.

Anthraquinones have a three-ring structure and have been used for centuries as purgatives and dyes. They are usually found in plants in a glycoside form (i.e. attached to sugar molecules). Anthraquinone laxatives irritate the bowel wall, provoking increased muscle contractions and peristaltic movements. Examples include senna, cascara sagrada, rhubarb, yellow dock, and aloe. Anthraquinones may also have antiviral, antibacterial, and cytotoxic properties.

![Anthraquinone Structure](image)

Figure 2.2 Basic structure of anthraquinones.

Coumarins are derived from cinnamic acid and are usually found in grasses and the pea family (such as clover). Coumarins are responsible for the scent of fresh cut grass. Dicumarol, the fermentation product of coumarin that is thought to inhibit vitamin K effects on coagulation biosynthesis due to its similarity in structure to vitamin K, is the anticoagulant from which warfarin was synthesized. Many coumarins, if injected, are anticoagulants but most plant coumarins are neutralized in the digestive tract and so have very little anticoagulant effects when ingested. Derivatives of coumarins have antifungal properties (like umbelliferone from the parsley family) and vascular tone effects (like esculin from horse chestnut).
Flavonoids are commonly found as pigments in flowering plants. Over 2000 different flavonoid compounds have been found in plants in either the free state or as glycosides. They are polyphenolic compounds with a base structure that consists of two aromatic rings joined with a three-carbon chain – the so-called ‘C6-C3-C6’ carbon skeleton. The three-carbon chain may be part of a more complex structure including ringed moieties. The nature of the functional groups at this central complex determines the subclass of flavonoids. Some examples include flavones (such as apigenin found in celery and other herbaceous plants of the *Labiatae*, *Umbelliferae*, and *Compositae* families), flavonols (found in woody flowering plants like quercitol or kaempferol from *Sambucus nigra*), flavonones, and anthocyanins. Flavonoids found in colorful fruits and vegetables have powerful antioxidant properties. Flavonoids are the reason why green tea, grape seed extract and pine bark extract have been so popular over the past few years.

Isoflavonoids are similar in structure to flavonoids but have one of their benzene rings at a slightly different position. Unlike most flavonoids, isoflavonoids are colorless and are limited to legume plants. Soy isoflavones are touted as agents that may lower low-density lipoprotein (LDL) cholesterol and triglycerides as well as helping with menopausal symptoms and complications.
Glucosinolates is a term often used to refer to a group of bound toxins such as the cyanogenic and isothiocyanate glycosides. Some glycosides produce hydrocyanic acid when hydrolyzed. These are referred to as cyanogenic glycosides. Amygdalin, found in apricot pits and bitter almonds, or prunasin, found in wild cherry bark, for example, are cyanogenic glycosides. The hydrolysis of the glycoside sinigrin from plants in the mustard family leads to allyl isothiocyanate – mustard oil. Plants from the mustard family as well as the cyanogenic glycosides have been used due to their anticarcinogenic properties. Laetrile (amygdalin) was a very popular cancer remedy in the 1980s despite clinical evidence of a lack of effect. Unfortunately, after pure amygdalin was banned, patients tried ingesting large amounts of apricot kernels, which led to several deaths because apricot kernels also contain an enzyme that hydrolyzes amygdalin and releases cyanide. Subsequent research showed that amygdalin alone can lead to cyanide poisoning.

Glycosides are compounds that contain a carbohydrate (glycone) and non-carbohydrate (aglycone) moiety joined by an acetal group. Although their chemical names can be quite complex, they can be recognized from their trivial names which are formed from the source plant name and the suffix '-in' such as salicin which is found in Salix (willow). Salicin is an alcohol glycoside found in willow bark that yields salicyl alcohol when hydrolyzed. Salicin has anti-inflammatory properties probably due to its oxidation into salicylic acid. It is shown here.

Figure 2.5 The conversion of flavonone to isoflavone.

Figure 2.6 Salicin, an example of an alcohol glycoside.
Classification of glycosides is difficult since it can be done either by the sugar or the non-sugar group or by pharmaceutic viewpoint. Glycosides are ubiquitous within plants and their aglycone groups include, among others, tannins, aldehydes, alcohols, saponins, anthraquinones, lactones, flavonoids, phenols, and isocyanates. The anthraquinones described earlier are found in plants as glycosides. Glucosinolates, a form of glycoside toxin, are described above. Glucovanillin is an aldehyde glycoside that is hydrolyzed to vanillin (an aldehyde) – the principal flavoring constituent of vanilla. Uva ursi, or bearberry, has a long tradition in folk medicine as a urinary antiseptic. Arbutin is a phenol glycoside found in bearberry (a small evergreen shrub) that can be hydrolyzed to the phenol hydroquinone – the agent that made arbutin a popular choice for urinary tract infections prior to sulfa antibiotics. Today hydroquinone is commonly used topically as a skin bleacher. The combination of sapogenin and a sugar yields a saponin glycoside which is described below as saponin. Sapogenins have steroid or triterpenoid aglycone structures. Cardiac glycosides, like digitoxin, are an example of a sapogenin with a steroid aglycone. These are discussed in greater detail under saponins.

Lignans are plant products formed by the coupling of two para-propylphenol (phenylpropanoid) moieties at their β carbon atoms. The three structures below represent different lignan skeletal types.

Figure 2.7 Three different skeletal structures of lignans.

If the two C₆C₃ units (4) are linked by a β,β’-bond the parent structure lignane (5) is used as the basis for naming the lignan.

Figure 2.8 β-β’-bond linkage of two C₆C₃ units to form a lignan (lignane).
If the two C₆C₃ units (4) are linked by a bond other than a β,β'-bond the parent structure, neolignane, is used as the basis for naming the neolignan such as 3,3'-neolignane shown below.

![Figure 2.9 Non-β-β'-bond linkage of two C₆C₃ units to form a neolignan (3,3'-neolignane).](image)

Lignans and neolignans play a role in plant defense as they have antimicrobial, antifungal, and insect repellent properties. Podophyllum is the dried rhizome and roots of *Podophyllum peltatum* (also known as mayapple or American mandrake). A resin from podophyllin (called podophyllotoxin) is a lignan that is used topically in the treatment of warts due to its antimitotic properties. The chemotherapeutic drug etoposide is a semisynthetic podophyllotoxin derivative. Podophyllotoxin is also a potent purgative. Other lignans, such as secoisolariciresinol, are considered to be phytoestrogens. Flaxseed has become very popular as a natural product therapy in women's health due to its very high lignan content. Other benefits of flaxseed, such as its potential role in lowering LDL cholesterol, are also attributed to its lignan content. Much of the natural product lay literature incorrectly states that lignans are synonymous with phytoestrogens. The chemical structures, and thus function, of lignans are quite variable. As discussed here, podophyllotoxin, a prototypic lignan, is used for papillomas and not as a phytoestrogen. It is shown here.

![Figure 2.10 Podophyllotoxin, an example of a lignan.](image)
Saponins are compounds that form colloidal solutions in water and foam on shaking. The name comes from the soapwort plant (*Saponaria*) the root of which was used as a soap. They consist of a polycyclic aglycone derived from squalene that is either a choline steroid or a cyclic triterpenoid (see terpenoids for description) attached via C3 and an ether bond to a sugar side chain, thus making them glycosides. Certain saponins called ‘sapotoxins’ are used as fish poisons. They have even been used in poison arrow tips. When ingested, saponins are usually safe in humans; however, when injected, their detergent effect on the lipid cell membrane leads to hemolysis. A large variety of plants contain saponins. The physiologic effects of saponins depend on the particular aglycone. Saponins from wild yam or fenugreek are precursors to estrogens or progestogens. They also exert lipid-lowering effects. The cardiac glycosides, like digitoxigenin from the foxglove plant, have a steroid aglycone group. These agents enhance cardiac contractility by increasing intracellular myocyte calcium concentration through effects on the Na\(^+/\)K\(^+-\)ATPase pump. Many plants have cardiac glycosides including lily-of-the-valley, Christmas rose, oleander, squill, and ouabain. Glycyrrhizin is a saponin from licorice that has been used as an expectorant and sweetener. When it is hydrolyzed in the body it forms glycyrrhetinic acid which inhibits enzymes that metabolize prostaglandins E2 and F2\(\alpha\). Physiologically, this leads to a reduction in gastric acid secretion and stimulation of uterine smooth muscle. A metabolite of glycyrrhetinic acid can inhibit 11-\(\beta\)-hydroxysteroid dehydrogenase which converts active cortisol to inactive cortisone in the kidneys. The net effect is sodium and water retention, hypokalemia, and hypertension. Ginseng contains a mixture of triterpenoid saponins, several of which are steroidal triterpenes called ginsenosides. These are thought to be responsible for ginseng’s biologic properties. The skeleton structure for the triterpenoid saponins of ginseng (ginsenosides) is shown below.

![Figure 2.11 Typical skeletal structure of triterpenoid saponins found in ginseng (ginsenosides).](image)

Tannins are plant polyphenols that contain hydroxyl or carboxyl groups that can form strong complexes with proteins. The ability of tannins to precipitate
proteins enables the conversion of animal hides to leather. Tannins are also responsible for the ‘puckering’ taste of red wine or unripe fruit. Tannins are broadly categorized into two forms – hydrolyzable and non-hydrolyzable.

Hydrolyzable tannins have a polyol (like D-glucose) central core and hydroxyl groups that are esterified with phenolic compounds. Hydrolyzable tannins are usually present in low amounts in plants. Tannins can combine with proteins and make them resistant to proteolytic enzymes. When used in living tissues this action is referred to as an ‘astringent’ effect. Astringents have historically been applied topically to burns and wounds or taken internally for gastrointestinal tract disorders like ulcers or gastritis. When superficial proteins in exposed tissues are precipitated, a protective and mildly antiseptic coat is thought to form that enables regeneration of tissue to occur below. The astringent effects of tannins from witch hazel leaves or nutgall have been known for centuries. A typical polymer of gallic acid is shown below. Tannic acid is a polymer of about eight monomers of gallic acid and glucose.

\[\text{Figure 2.12} \text{ Structure of a hydrolyzable tannin formed as a polymer of gallic acid with a polyol (glucose moiety) at the core.} \]

Non-hydrolyzable tannins (also called condensed tannins based on their small molecular size) are composed of flavonoid units linked by carbon-to-carbon bonds that cannot be cleaved by hydrolysis. When non-hydrolyzable tannins are heated in acidic solutions they form anthocyanidin pigments (described earlier) leading to their other synonym, proanthocyanidins. Proanthocyanidins (also referred to as pycnogenols) lead to anthocyanidins that are effective antioxidants and free radical scavengers. As discussed earlier, they are found in pine bark, grape seed, and green tea. A trimer of catechin is shown here.
Terpenes and terpenoids are synthesized from a 5-carbon isoprene molecule (C₅H₈). Terpenes are hydrocarbons and terpenoids are oxygen-containing hydrocarbons. Since all these molecules are made from isoprene, they can also be called isoprenoids. Two isoprene units form a 10-carbon molecule called a monoterpane. Terpenoids can be classified based on the number of isoprene units (hence carbons) that make up their skeleton structure. These are summarized in the table below:

<table>
<thead>
<tr>
<th>Terpenoid</th>
<th>Isoprenes</th>
<th>Formula</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monoterpenoids</td>
<td>2</td>
<td>C₁₀H₁₆</td>
<td>Cineole (found in eucalyptus)</td>
</tr>
<tr>
<td>Sesquiterpenoids</td>
<td>3</td>
<td>C₁₅H₂₄</td>
<td>Valerenic acid (found in valerian)</td>
</tr>
<tr>
<td>Diterpenoids</td>
<td>4</td>
<td>C₂₀H₃₂</td>
<td>Taxol (from Pacific yew)</td>
</tr>
<tr>
<td>Triterpenoids</td>
<td>6</td>
<td>C₃₀H₄₈</td>
<td>Glycyrrhetic acid (from licorice)</td>
</tr>
<tr>
<td>Tetraterpenoids</td>
<td>8</td>
<td>C₄₀H₆₀</td>
<td>Lycopene (carotenoids)</td>
</tr>
</tbody>
</table>

A subgroup of structurally related sesquiterpenes are limited to only few families of plants such as Asteraceae. These are called sesquiterpene lactones and usually are responsible for the bitter taste and toxicity of many plants in which they are found. Artemisinin, a sesquiterpene lactone from Artemisia annua has a long history of use for its antimalarial properties. Parthenolide is a sesquiterpene lactone found in feverfew which has been shown to reduce the frequency and severity of migraine. Many triterpenoids exist as pentacyclic structures resembling steroid skeletons. Others have a tetracyclic structure. Since most are alcohols they can combine with sugars to form glycosides. Pentacyclic triterpenoids are often saponins. Carotenoids are found in brightly colored fruits and vegetables. Lycopene and other carotenoids are powerful antioxidants.
Volatile oils are the fragrant or aromatic plant compounds that evaporate when exposed to air at normal temperatures. They are also called essential oils as these oils impart the odoriferous character or ‘essence’ of the plant. Spices are made from plant parts that contain volatile oils. Volatile oils are also used in aromatherapy, as flavoring agents, and in the perfume industry. Volatile oils may also have medical properties such as the antiseptic or expectorant properties of eucalyptus oil or disinfectant properties such as pine oil. Structurally, volatile oils are either terpenoid derivatives (like those volatile oils characteristic of menthol, camphor, lemon and pine) or phenylpropanoids (like those in cinnamon, cloves, and wintergreen).

Volatile oils are the fragrant or aromatic plant compounds that evaporate when exposed to air at normal temperatures. They are also called essential oils as these oils impart the odoriferous character or ‘essence’ of the plant. Spices are made from plant parts that contain volatile oils. Volatile oils are also used in aromatherapy, as flavoring agents, and in the perfume industry. Volatile oils may also have medical properties such as the antiseptic or expectorant properties of eucalyptus oil or disinfectant properties such as pine oil. Structurally, volatile oils are either terpenoid derivatives (like those volatile oils characteristic of menthol, camphor, lemon and pine) or phenylpropanoids (like those in cinnamon, cloves, and wintergreen).
Herbal medicines

Figure 2.17 Eugenol (from cloves)

Suggested reading
Chapter 3

METHODOLOGY

In keeping with the principles of evidence-based practice, we have endeavored to identify all the relevant literature on the specific health products examined. Our search strategy employed systematic searching of the following databases:

- AltHealthWatch
- AMED
- CinAhl
- Cochrane Database of Systematic Reviews
- Cochrane CENTRAL Controlled Trials Database
- E-Psyche
- DARE
- MedLine

The MeSH terms used for searching included ‘pregnancy’, ‘lactation’, and ‘breastfeeding’. For individual health products, we searched using both the common and Latin names, and where appropriate, we searched using known synonyms. In the case of a well-known active ingredient or constituent, this term was also used in the search for its safety during pregnancy and lactation. The principal databases used were:

- Pubmed
- Cochrane Trial Registry (CENTRAL) and Cochrane Review database
- AMED
- CINAHL
- E-Psyche

To ensure that reports, trials, and other forms of evidence were not overlooked owing to the variety of common names for each individual herb, e.g. *Panax ginseng* is also known as ren shen in traditional Chinese medicine, the following additional databases were consulted:

- www.naturalstandard.com
- www.naturaldatabase.com
- The Complete German Commission E Monographs by the American Botanical Council

Each relevant journal article was collected and referenced in our database. The nature of the findings and the grade of evidence were then assessed and compiled in our final report.
Herbal medicines

The grade of evidence for indications was evaluated as follows:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Level of evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Very strong scientific evidence</td>
</tr>
<tr>
<td></td>
<td>Statistically significant evidence of benefit from one or more systematic reviews or meta-analyses</td>
</tr>
<tr>
<td>B1</td>
<td>Strong scientific evidence</td>
</tr>
<tr>
<td></td>
<td>Statistically significant evidence of benefit from one or more properly conducted randomized controlled trials (RCTs).</td>
</tr>
<tr>
<td>B2</td>
<td>Good scientific evidence</td>
</tr>
<tr>
<td></td>
<td>Statistically significant evidence of benefit from one or more RCTs. The RCTs, however, are either of small sample size or have discrepancies in their methodologies</td>
</tr>
<tr>
<td>C</td>
<td>Fair scientific evidence</td>
</tr>
<tr>
<td></td>
<td>Statistically significant evidence of benefit from one or more cohort studies or outcome studies</td>
</tr>
<tr>
<td>D</td>
<td>Weak scientific evidence</td>
</tr>
<tr>
<td></td>
<td>Evidence from case series</td>
</tr>
<tr>
<td>E</td>
<td>Theoretical and/or clinical evidence</td>
</tr>
<tr>
<td></td>
<td>Evidence from case reports or expert opinion or laboratory studies</td>
</tr>
<tr>
<td>F</td>
<td>Historical or traditional evidence</td>
</tr>
<tr>
<td></td>
<td>Historical or traditional evidence of use by medical professionals, herbologists, scientists or aboriginal groups</td>
</tr>
</tbody>
</table>

The level of evidence for harm was evaluated as follows:

<table>
<thead>
<tr>
<th>Level</th>
<th>Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>Very strong scientific evidence</td>
</tr>
<tr>
<td></td>
<td>Statistically significant evidence from one or more systematic reviews or RCTs</td>
</tr>
<tr>
<td>1b</td>
<td>Strong scientific evidence</td>
</tr>
<tr>
<td></td>
<td>Statistically significant evidence from one or more cohort studies or control studies</td>
</tr>
<tr>
<td>1c</td>
<td>Good scientific evidence</td>
</tr>
<tr>
<td></td>
<td>Evidence from one or more case series</td>
</tr>
<tr>
<td>2</td>
<td>Fair scientific evidence</td>
</tr>
<tr>
<td></td>
<td>Evidence based on case reports</td>
</tr>
<tr>
<td>3</td>
<td>In vitro scientific evidence</td>
</tr>
<tr>
<td></td>
<td>Evidence based on scientific studies conducted on animals, insects or microorganisms, or laboratory studies on human cells</td>
</tr>
<tr>
<td>4</td>
<td>Theoretical evidence</td>
</tr>
<tr>
<td></td>
<td>Evidence based on scientific theory or expert opinion</td>
</tr>
<tr>
<td>5</td>
<td>Unknown</td>
</tr>
<tr>
<td></td>
<td>No available information</td>
</tr>
</tbody>
</table>
Chapter 4

HERBAL MEDICINES

Herbal medicines are increasingly popular among the general public, particularly women of childbearing age. These medicines are not only viewed as having clinical benefits but are also generally believed to be safe. In some cases, a systematic review of the evidence-based medicine literature shows that this is not the case.

In pregnancy, soon-to-be mothers are concerned about all medications that may affect their health, the health of their fetus, and the pregnancy outcome. When it comes to the types of evidence for herbal medicines during pregnancy and lactation, not all evidence is created equally. The type of evidence for the safety of herbal medicines during pregnancy and lactation ranges from theoretical to animal studies, to case reports, to cohort studies and finally to randomized controlled trials.

This chapter aims to provide healthcare practitioners and mothers-to-be with the best available evidence-based safety information on the products they may choose to use or not to use during pregnancy and lactation. We selected 60 herbal medicines in total. In choosing these herbs, we set forth a number of selection criteria. These are outlined below.

Herbs that are frequently used during pregnancy, e.g. black and blue cohosh, red raspberry, evening primrose oil
Herbs that are used to treat pregnancy-related complaints, e.g. ginger
Herbs that are known abortifacients, e.g. pennyroyal, parsley
Herbs that have narrow therapeutic indices and are toxic, e.g. digitalis, deadly nightshade, ephedra
Herbs that are used more often by women than men, e.g. red clover, don quai
Herbs that are known to have hormonal effects, e.g. chastetree
The most frequently used herbs, e.g. St. John’s wort (depression), garlic (hyperlipidemia), ginkgo (memory), Echinacea (immune system)

Systematic reviews on all 60 herbal medicines are presented as follows:

Common name
The name by which the herb is commonly referred to, e.g. garlic.

Latin name
The Latin name (genus, species) of the herb, e.g. *Allium sativum*. In some cases, more than one species of the herb has the same therapeutic effect, e.g. *Panax* spp.
24 Herbal medicines

Synonyms
Other names by which the herb may be known.

Indications
The main therapeutic indications for the herb. According to evidence-based medicine principles, the indications for the herb are evaluated based on grades/levels of evidence (see Chapter 3).

Pregnancy
The safety of the herb during pregnancy. According to evidence-based medicine principles, the safety of the herb during pregnancy is evaluated based on grades/levels of evidence (see Chapter 3).

Lactation
The safety of the herb during lactation. According to evidence-based medicine principles, the safety of the herb during lactation is evaluated based on grades/levels of evidence (see Chapter 3).

Contraindications
Conditions and diseases in which the herb should not be taken.

Caution
Conditions or diseases in which the herb should be used with caution.

Constituents
The main pharmacological constituents in the herb.

Toxicity
The toxicity of the herb (lethal dose \(\text{LD}_{50} \)) where available.

Pharmacology
General pharmacological properties of the herb.

Drug interactions
Drugs that may interact with the herb.

Parts used
The part that provides the therapeutic benefits of the herb, e.g. root, leaf, stem.
ALFALFA
Medicago sativa

Synonyms/common names/related compounds
Feuille de luzerne, lucerne, medicago, phytoestrogen, purple medick

Indications

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menopausal symptoms (with sage)</td>
<td>B2</td>
</tr>
<tr>
<td>Elevated cholesterol</td>
<td>D</td>
</tr>
<tr>
<td>Atherosclerosis</td>
<td>E</td>
</tr>
<tr>
<td>Diabetes</td>
<td>E</td>
</tr>
</tbody>
</table>

Pregnancy

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estrogenic activity</td>
<td>3</td>
</tr>
<tr>
<td>Isolated compounds have uterine-stimulating activity</td>
<td>4</td>
</tr>
<tr>
<td>Emmenagogue</td>
<td>4</td>
</tr>
<tr>
<td>Anti-gonadotrophic activity</td>
<td>4</td>
</tr>
</tbody>
</table>

A study on the effects of dietary genistein exposure during development found that dietary genistein produced effects in multiple estrogen-sensitive tissues in both male and female rats. Another study reported estrogenic activity of genistein and daidzein in human cells in vitro and in rats. The phytoestrogen coumestrol, contained in alfalfa, was reported to be 35 times more potent than the phytoestrogens genistein, biochanin A, formononetin and daidzein. A review article on the potential value of plants as sources of anti-fertility agents reported that alfalfa has estrogenic activity.

A review article on the potential value of plants as sources of anti-fertility agents reported that alfalfa was a uterine stimulant and that its constituent stachydrine was a uterine stimulant.

A herbal medicine compendium reported that alfalfa is an emmenagogue. There are no reports in the scientific literature of alfalfa being an emmenagogue.

A review article on the potential value of plants as sources of anti-fertility agents reported that alfalfa had anti-gonadotrophic activity in rats where the acid extract interfered with the growth of the seminal vesicles and potentiated the action of estrogens.
Consumed as food

Minimal risk:15–17 Evidence level 3

In a study on the effects of alfalfa feeding on pregnancy and lactation in beef heifers, no adverse effects were reported when alfalfa was consumed in food amounts.16 A herbal medicine compendium reported that when consumed as food, alfalfa is believed to be of minimal risk.15

Lactation

Estrogenic activity:10–12 Evidence level 3

A study on the effects of dietary genistein exposure during development found that dietary genistein produced effects in multiple estrogen-sensitive tissues in both male and female rats.10 Another study reported estrogenic activity of genistein and diadzein in human cells in vitro and in rats.11 The phytoestrogen coumestrol, contained in alfalfa, was reported to be 35 times more potent than the phytoestrogens genistein, biochanin A, formononetin and daidzein.12

Lactogenic:14 Evidence level 4

A review article on the potential value of plants as sources of anti-fertility agents reported that alfalfa seeds may be lactogenic.14

Consumed as food

Minimal risk:15–17 Evidence level 3

In a study on the effects of alfalfa feeding on pregnancy and lactation in beef heifers, no adverse effects were reported with alfalfa consumed in food amounts.16 A herbal medicine compendium reported that when consumed as food, alfalfa is believed to be of minimal risk.15

Contraindications

Systemic lupus erythematosus19,20

Caution

- Hormone sensitive conditions such as breast, uterine, or ovarian cancer, endometriosis and fibroids12,21
- Diabetes15

Constituents

- Saponins15,22
- Flavonoids23
- Phytoestrogens:1,12,24 coumestrol, genistein, biochanin A, and daidzein
- Vitamins A, C, E, and K15
- Manganese15,25
- Stachydrine14

Toxicity

In a 6-week study, no signs of toxicity were reported in six humans consuming 160 g a day of alfalfa for 3 weeks followed by 80 g of alfalfa a day for 3 weeks.5

Pharmacology

- The phytoestrogens coumestrol, genistein, biochanin A and daidzein have been shown to have estrogenic properties.$^{10-12,24}$
- The saponin constituents in alfalfa leaves were shown to decrease total cholesterol levels without affecting high-density lipoprotein levels.15
- Alfalfa constituents may decrease cholesterol absorption and increase fecal excretion of neutral steroids and bile acids.15,26
- Alfalfa contains manganese which might be responsible for its hypoglycemic effects.15
- Alfalfa contains medicagol, which appears to have anti-fungal properties.1

Drug interactions

Anti-coagulants15
Photosensitizing drugs27
Oral contraceptives1,15
Hormone therapy15
Warfarin (Coumadin)15

Parts used

Above ground parts28

References

ALOE

Aloe *spp.*

Synonyms/common names/related substances

A. vera (*A. barbadensis*), *A. ferox*, *A. africana*, *A. arborescens natalenis*, *A. capensis*, *A. leaf gel*, *A. perfoliata*, *A. perryi*, *A. spicata*, salvia, cape aloes, Barbados aloe, Curacao aloe, hepatic aloes, aloe dried juice from leaf, aloe juice, burn plant, elephant’s gall, hsiang-dan, lily of the desert, lu-hui, miracle plant, plant of immortality

Indications

Oral

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chronic constipation</td>
<td>B1</td>
</tr>
<tr>
<td>Solid tumors (with melatonin)</td>
<td>C</td>
</tr>
<tr>
<td>Elevated cholesterol and triglycerides, hyperglycemia and low high-density lipoprotein cholesterol (with husk of Isabgol)</td>
<td>C</td>
</tr>
<tr>
<td>Chronic venous leg ulcers</td>
<td>C</td>
</tr>
<tr>
<td>Fibromyalgia, chronic fatigue syndrome</td>
<td>C</td>
</tr>
<tr>
<td>Diabetes type 2</td>
<td>E</td>
</tr>
<tr>
<td>Bronchial asthma (aloe vera gel)</td>
<td>E</td>
</tr>
</tbody>
</table>

Topical

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Psoriasis vulgaris</td>
<td>B1</td>
</tr>
<tr>
<td>Herpes simplex type II</td>
<td>B1</td>
</tr>
<tr>
<td>Seborrheic dermatitis</td>
<td>B1</td>
</tr>
<tr>
<td>Radiation induced dermatitis</td>
<td>B2</td>
</tr>
<tr>
<td>Occupational dry skin, irritant contact dermatitis</td>
<td>B2</td>
</tr>
<tr>
<td>Burn wounds</td>
<td>C</td>
</tr>
<tr>
<td>Alveolar osteitis</td>
<td>C</td>
</tr>
</tbody>
</table>
30 Herbal medicines

Chronic venous leg ulcers: Evidence grade C

Anti-arthritic, anti-inflammatory (<i>A. africana</i>): Evidence grade E

Anti-inflammatory (<i>A. vera</i>): Evidence grade E

Wounds (<i>A. vera</i>): Evidence grade E

Pregnancy

Oral

Potentially nephrotoxic: Evidence level 2

Potential hepatic dysfunction: Evidence level 2

A case of acute oliguric renal failure and liver dysfunction was reported in the literature following traditional therapeutic use of cape aloes.

Potential abortifacient: Evidence level 4

Emmenagogue: Evidence level 4

A review article on the potential value of plants as sources of anti-fertility agents reported that aloe species are potential abortifacients and emmenagogues.

Potentially genotoxic: Evidence level 3

Potentially mutagenic: Evidence level 3

Potentially carcinogenic: Evidence level 3

Aloe-emodin, a 1,8-dihydroxyanthraquinone found in aloe, is potentially carcinogenic, mutagenic and genotoxic in mice.

Topical

Aloe vera gel – minimal risk: Evidence level 4

A herbal medicine compendium reported that the external use of aloe vera gel is not a concern during pregnancy. The external use of aloe was not reported in the scientific literature as contraindicated or safe during pregnancy or lactation.

Lactation

Oral

Potentially genotoxic: Evidence level 3
Potentially mutagenic:3,28,29 Evidence level 3

Potentially carcinogenic:3,28,29 Evidence level 3

Although it is unclear if aloe components cross into breast milk, these components are potentially genotoxic/mutagenic and carcinogenic to the nursing infant.3,28,29

Avoid during lactation:3,31 Evidence level 4

A herbal safety and drug interaction compendium and a herbal medicine compendium reported that aloe species should be avoided during lactation.3,31

Potential laxative:3,28 Evidence level 4

A herbal safety and drug interaction compendium and a herbal medicine compendium reported that aloe species may cause diarrhea in the infant due to aloe’s laxative effect.3,28

Topical

Use with caution: Evidence level 4

Infants nursing from a breast to which aloe has been topically applied may be susceptible to the same risks as if aloe components where ingested.

Contraindications2,3,26,30,32

Menstruation (especially menorrhagia and metrorrhagia)

Actively inflamed hemorrhoids

Intestinal obstruction

Acutely inflamed intestinal diseases (e.g. Crohn disease, ulcerative colitis, appendicitis)

Abdominal pain of unknown origin

Kidney dysfunction

Children under 12 years of age

Caution

If used for more than 8–10 days

Postsurgical wounds33

Constituents

- Anthroquinone glycosides:3,30 aloin A, aloin B, aloinoside A, aloinoside B, 7-hydroxyaloins, emodin
- Anthraquinone:34 aloe-émoin (1,8-dihydroxyanthraquinone)
- Aloresin A30
32 Herbal medicines

Toxicology
- Aloe-emodin is potentially carcinogenic and genotoxic.29,35
- Acemannan exhibited significant cytotoxicity to human gingival fibroblasts; however, in animals, oral administration of acemannan was found to be safe.36–38

Pharmacology
- The anthraquinones (dried latex) in aloe exert a laxative and purgative effect whereas aloe gel does not.3
- Aloe and aloe gum may have a hypoglycemic effect.11–13
- With husk of Isabgol, aloe significantly reduced total cholesterol, triglycerides, fasting and postprandial blood sugar levels in diabetic patients, and total lipids and increased high-density lipoprotein cholesterol.8
- Aloe vera gel has been shown to delay wound healing in women following cesarean delivery or laparotomy.13
- Topical application – \textit{A. africana} was found to have anti-arthritic and anti-inflammatory effects.23
- Aloe vera gel was found to enhance phagocytosis in human bronchial asthma.14
- Aloe vera gel was found to reduce pruritus by inhibiting thromboxane formation in vivo, inactivating bradykinin in vitro, and inhibiting histamine.39
- Aloe vera gel may have anti-bacterial and anti-fungal effects.39
- The addition of aloe vera gel to a mild soap had a protective effect on the skin of patients undergoing radiation therapy.19

Drug interactions
- Anti-glycemic drugs11–13
- Cardiac glycosides3
- Diuretics2
- Oral drugs31

Parts used1,30
- Dried latex and gel from leaves

References

ASHWAGANDHA
Withania somnifera

Synonyms/common names/related compounds
Ajagandha, amangura, amukkirag, asan, asgand, asgandh, asgandha, asha-gandha, ashwagandha, ashwaganda, asoda, asundha, asvagandha, aswagandha, avarada, ayurvedic ginseng, clustered wintercherry, ghoda asoda, Indian ginseng, kanaje hindi, kuthmithi, samm al ferakh, turangi-ghanda, winter cherry, withania

Indications

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Osteoarthritis (with Boswellia, turmeric, and zinc)</td>
<td>B2</td>
</tr>
<tr>
<td>Diabetes type 2</td>
<td>C</td>
</tr>
<tr>
<td>Hypercholesterolemia</td>
<td>C</td>
</tr>
<tr>
<td>Stress</td>
<td>E</td>
</tr>
<tr>
<td>Cancer</td>
<td>E</td>
</tr>
</tbody>
</table>

Pregnancy

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduces fertility</td>
<td>3</td>
</tr>
</tbody>
</table>

A review article on the potential value of plants as sources of anti-fertility agents reported that ashwagandha caused a reduction in fertility in rats.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abortifacient</td>
<td>4</td>
</tr>
<tr>
<td>Uterine stimulant constituent</td>
<td>4</td>
</tr>
</tbody>
</table>

A review article on the potential value of plants as sources of anti-fertility agents reported that ashwagandha was a potential abortifacient and that its constituent, nicotine, was a uterine stimulant.

Lactation

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unknown</td>
<td>5</td>
</tr>
</tbody>
</table>

There are no reports in the scientific literature of ashwagandha being either safe or contraindicated during lactation.
Constituents
Alkaloids: isopelletierine, anaferine
Steroidal lactones: withanolides, aithaferins
Saponins

Toxicity
- LD₅₀ (intraperitoneal): 432–465 mg/kg
- Doses of 1000 mg/kg produced fatalities in mice.
- Doses of 500–750 mg/kg given to total cumulative doses of 7.5–10 g were apparently safe.

Pharmacology
- Ashwagandha was reported to have analgesic, anti-pyretic, anxiolytic, immunomodulatory, sedative, hypotensive, anti-inflammatory, and antioxidant effects.
- During stress, ashwagandha suppresses the increases of plasma corticosterone, blood urea nitrogen, blood lactic acid, and the increase of dopamine receptors in the corpus striatum of the brain.
- Ashwagandha may have anxiolytic effects by acting as a γ-aminobutyric acid (GABA) mimetic agent and anti-convulsant activity by binding to GABA receptors.
- Ashwagandha stimulates respiratory function, smooth muscle relaxation, and thyroid hormone synthesis and secretion.
- The ashwagandha constituent withanolides cause mobilization of macrophages, phagocytosis, and lysosomal enzymes.
- Ashwagandha reduces cyclophosphamide-induced immunosuppression and leukopenia and increases bone marrow cell and white blood cell count in radiation-treated animals.
- Ashwagandha has diuretic effects.

Drug interactions
Benzodiazepines
Central nervous system depressants
Immunosuppressant drugs
Thyroid hormone

Parts used
Root and berry

References
ASTRAGALUS

Astragalus membranaceus

Synonyms/common names/related substances

Astragali, beg kei, bei qi, buck qi, huang qi, hwanggi, membranous milk vetch, milk vetch, Mongolian milk, ogi

Indications

<table>
<thead>
<tr>
<th>Disorder</th>
<th>Evidence grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chronic hepatitis (within a Chinese herbal preparation)</td>
<td>B2</td>
</tr>
<tr>
<td>Human immunodeficiency virus infection (within a Chinese herbal preparation)</td>
<td>B2</td>
</tr>
<tr>
<td>Chronic nephritis</td>
<td>B2</td>
</tr>
<tr>
<td>Minimal brain dysfunction</td>
<td>B2</td>
</tr>
<tr>
<td>Immune stimulation</td>
<td>C</td>
</tr>
<tr>
<td>Leucopenia</td>
<td>C</td>
</tr>
<tr>
<td>Chemotherapy side effects</td>
<td>C</td>
</tr>
<tr>
<td>Post acute myocardial infarction</td>
<td>C</td>
</tr>
<tr>
<td>Acute viral myocarditis (with drugs and other supplements)</td>
<td>C</td>
</tr>
<tr>
<td>Congestive heart failure</td>
<td>C</td>
</tr>
<tr>
<td>Chronic renal failure</td>
<td>C</td>
</tr>
<tr>
<td>Liver protection</td>
<td>E</td>
</tr>
<tr>
<td>Cancer</td>
<td>E</td>
</tr>
<tr>
<td>Herpes simplex I</td>
<td>E</td>
</tr>
</tbody>
</table>

Pregnancy

| Unknown | Evidence level 5 |

There is no report in the scientific literature of astragalus being either safe or contraindicated during pregnancy.
Other Astragalus species

Unsafe during pregnancy:¹⁷,¹⁸ Evidence level 3

Estrogenic:¹⁹ Evidence level 4

Other Astragalus spp., such as *A. lentiginosis* or *A. mollissimus* (locoweed), have been reported to have harmful effects during animal pregnancies.¹⁷ Ingestion of locoweed (*Astragalus* spp.) by pregnant livestock may result in fetal malformations, delayed placentation, reduced placental and uterine vascular development, hydrops amnii, hydrops allantois, abnormal cotyledonary development, interruption of fetal fluid balance, and abortion.¹⁸ During pregnancy, the toxic agent in locoweed (swainsonine) is believed to pass through the placental barrier to the fetus.¹⁸ A review article on the potential value of plants as sources of anti-fertility agents reported that *A. hypogaea*, *A. lentiginosis*, *A. miser*, and *A. sinicus* have estrogenic activity.¹⁹ *A. membranaceus* is not reported in the scientific literature as containing the toxic agent swainsonine.

Lactation

Unknown: Evidence level 5

There is no report in the scientific literature of astragalus being either safe or contraindicated during lactation.

Other Astragalus species

Unsafe during lactation:¹⁸ Evidence level 3

During lactation, the toxic agent in locoweed (swainsonine) is believed to pass through the milk to the neonate.¹⁸ *A. membranaceus* is not reported in the scientific literature as containing the toxic agent swainsonine.

Constituents²⁰,²¹

- Saponins: astragaloside
- Flavonoids
- Polysaccharides
- Coumarins
- Trace minerals
- Amino acids

Toxicity

- LD₅₀ in mice (intraperitoneal): 39.8 g/kg.²²
- Doses greater than 28 g/day may cause immunosuppression.²¹
- Aqueous extracts of 1.25 mg/mL modestly increased the incidence (16%) of aberrant cells in vitro.²³
Pharmacology

- Astragalus is an antioxidant where it inhibits free radical production, increases superoxide dismutase, and decreases lipid peroxidation.21
- Astragalus acts as an immune stimulant by increasing the effects of interferon, by increasing antibody levels of IgA and IgG in nasal secretions, by improving the response of mononuclear cells and by stimulating lymphocyte production.7,21
- Astragalus may restore or improve immune function in cases of immune deficiency.7,24
- Lower doses appear to stimulate the immune system, while doses in excess of 28 g/day may suppress immunity.21
- Astragalus may increase proliferation and differentiation of bone marrow stem cells and progenitor cells when administered intravenously.21
- Astragalus decreases liver enzymes serum glutamate pyruvate transaminase and alanine aminotransferase.2,15,21
- Astragalus causes vasodilation and increases cardiac output.21
- Astragalus has anti-bacterial activity.21

Drug interactions

- Cyclophosphamide21,24
- Immunosuppressants21

Parts used

- Root1

References

7. Sun Y, Hersh EM, Talpaz M et al. Immune restoration and/or augmentation of local
graft versus host reaction by traditional Chinese medicinal herbs. Cancer 1983;
52:70–73.
8. Weng XS. [Treatment of leucopenia with pure Astragalus preparation – an
analysis of 115 leucopenic cases]. Zhongguo Zhong Xi Yi Jie He Za Zhi 1995;
9. Li NQ. [Clinical and experimental study on shen-qi injection with chemotherapy
in the treatment of malignant tumor of digestive tract]. Zhongguo Zhong Xi Yi Jie He
10. Chen LX, Liao JZ, Guo W. [Effects of Astragalus membranaceus on left ventricular
function and oxygen free radical in acute myocardial infarction patients and
mechanism of its cardiotonic action]. Zhongguo Zhong Xi Yi Jie He Za Zhi 1995;
15:141–143.
11. Gu W, Yang YZ, He M. [A study on combination therapy of Western and traditional
Chinese medicine of acute viral myocarditis]. Zhongguo Zhong Xi Yi Jie He Za Zhi
12. Yan HJ. [Clinical and experimental study of the effect of kang er xin-I on viral
13. Luo HM, Dai RH, Li Y. [Nuclear cardiology study on effective ingredients of
Astragalus membranaceus in treating heart failure]. Zhongguo Zhong Xi Yi Jie He
14. Sheng ZL, Li NY, Ge X. [Clinical study of baoyuan dahuang decoction in the treat-
ment of chronic renal failure]. Zhongguo Zhong Xi Yi Jie He Za Zhi 1994;
14:268–270, 259.
15. Fu QL. [Experimental study on yi qi-huo xue therapy of liver fibrosis]. Zhongguo
in treating chronic hepatitis B]. Zhongguo Zhong Xi Yi Jie He Za Zhi 1993;
17. Panter KE, James LF, Stegelmeier BL, Ralphs MH, Pfister JA. Locoweeds: effects on
18. Bunch TD, Panter KE, James L. Ultrasound studies of the effects of certain poison-
70:1639–1643.
19. Farnsworth NR, Bingel AS, Cordell GA, Crane FA, Fong HH. Potential value of
20. Leung AY, Foster S. Encyclopedia of Common Natural Ingredients Used in Food,
23. Tadaki S, Yamada S, Miyazawa N et al. [Clastogenicity of Eucommiae and Astragali
II. Reversal of cyclophosphamide-induced immune suppression by administration of
BARBERRY
Berberis vulgaris

Synonyms/common names/related substances
European barberry, pepperidge, sow berry, jaundice berry, berberry, berbis, common barberry, epine-vinette, espinon cambrón, pipperidge, piprage, sauerdorn, vinettier, agracejo, Berberidis cortex, B. fructus, B. radicis cortex, B. radix, berberitze

Indications

Berberine

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloroquine-resistant malaria (with pyrimethamine)</td>
<td>B1</td>
</tr>
<tr>
<td>Infectious diarrhea</td>
<td>B1</td>
</tr>
<tr>
<td>Trachoma (Chlamydia trachomatis eye infection)</td>
<td>B2</td>
</tr>
<tr>
<td>Congestive heart failure</td>
<td>C</td>
</tr>
<tr>
<td>Upper respiratory tract infections</td>
<td>E</td>
</tr>
<tr>
<td>Anti-Helicobacter pylori</td>
<td>E</td>
</tr>
<tr>
<td>Cancer prevention</td>
<td>E</td>
</tr>
</tbody>
</table>

Pregnancy

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>May cause newborn jaundice (kernicterus)</td>
<td>3</td>
</tr>
</tbody>
</table>

In rats, berberine displaces bilirubin bound to albumin. Berberine (10–20 μg/g) was administered intraperitoneally to adult rats on a daily basis for 1 week. After 1 week, a significant decrease in mean bilirubin serum protein binding was observed, due to an in vivo displacement effect by berberine. Persistent elevation in serum concentrations of unbound and total bilirubin was also observed.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uterine stimulant</td>
<td>4</td>
</tr>
</tbody>
</table>

A review article on the potential value of plants as sources of anti-fertility agents reported that barberry was a uterine stimulant. The alkaloids palmatine, berberine, jatrorrhizine and columbamine, contained in barberry, are believed to act as uterine stimulants.
Lactation

| May cause or aggravate newborn jaundice (kernicterus): | Evidence level 3 |

In rats, berberine displaces bilirubin bound to albumin. Berberine (10–20 µg/g) was administered intraperitoneally to adult rats on a daily basis for 1 week. After 1 week, a significant decrease in mean bilirubin serum protein binding was observed, due to an in vivo displacement effect by berberine. Persistent elevation in serum concentrations of unbound and total bilirubin was also observed.

Contraindication

Newborn jaundice (kernicterus)

Toxic constituents

- Isoquinoline alkaloids: oxyacanthine, berbamine, berberine, palmatine, jatorrhizine, columbamine
- Tannins

Toxicology

LD₅₀ of berberine in humans: 27.5 mg/kg

Pharmacology

- Berberine was found to displace bilirubin bound to albumin in vitro.
 Berberine was found to be about 10 times superior to phenylbutazone, a known potent displacer of bilirubin, and about 100 times superior to papaverine, a berberine-type alkaloid.
- The constituents berberine and oxyacanthine have been shown to have antibacterial activity.
- Berberine has been shown to have amebicidal, anti-parasitic (trypanocidal) and anti-fungal activity.
- Berberine and β-hydrastine were shown to have anti- Helicobacter pylori activity in vitro.
- In low doses, berberine may act as a cardiac and respiratory stimulant, whereas in high doses it may act as a cardiac and respiratory depressant.
- Berberine was shown to have anti-platelet activity.
- Berberine, oxyacanthine, and barbamine were shown to have anti-inflammatory effects.
- Berberine was found to have an anti-diarrheal effects.
- Berberine was found to inhibit parathyroid hormone-stimulated bone resorption, inhibit osteoclastic bone resorption and prevent a decrease in bone mineral density of the lumbar vertebra.
Drug interactions

Anti-coagulant drugs

Highly protein-bound drugs

Parts used

References

BLACK COHOSH

Cimicifuga racemosa

Synonyms/common names/related substances
Baneberry, black snakeroot, bugbane, bugwort, cimicifuga, macrotys, phyto-estrogen, rattle root, rattle snakeroot, rattle top, rattlesnake root, rattlesnake, snakeroot, squaw root, squawroot

Indications

<table>
<thead>
<tr>
<th>Indication</th>
<th>Evidence Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menopausal symptoms:</td>
<td>B1</td>
</tr>
<tr>
<td>Arthritis pain (with white willow bark, sarsaparilla, poplar bark and guaiacum resin):</td>
<td>B2</td>
</tr>
<tr>
<td>Induction of labor:</td>
<td>B</td>
</tr>
</tbody>
</table>

Pregnancy

<table>
<thead>
<tr>
<th>Indication</th>
<th>Evidence Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Induces labor:</td>
<td>4</td>
</tr>
</tbody>
</table>

A survey of midwives in the USA found that 45% use black cohosh to induce labor. Black cohosh is part of a combination of herbal medicines that have been traditionally used in the third trimester to prepare a woman for delivery; this preparation is called ‘mother’s cordial’ or ‘partus preparatus’. In addition to black cohosh, mother’s cordial contains: squaw vine (*Mitchella ripens*), raspberry (*Rubus idaeus*), blue cohosh (*Caulophyllum thalictroides*) and false unicorn (*Chamaelirium luteum*).

<table>
<thead>
<tr>
<th>Indication</th>
<th>Evidence Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hormonal effect (potentially estrogenic and/or anti-estrogenic):</td>
<td>4</td>
</tr>
</tbody>
</table>

It is unclear if black cohosh has an estrogenic and/or an anti-estrogenic effect. Nonetheless, a review article recommended that black cohosh be avoided during pregnancy due to its potential hormonal effect.

<table>
<thead>
<tr>
<th>Indication</th>
<th>Evidence Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emmenagogue (especially in first trimester):</td>
<td>4</td>
</tr>
</tbody>
</table>

A herbal contraindication and drug interaction compendium reported that black cohosh was an emmenagouge and contraindicated during pregnancy, particularly in the first trimester.

<table>
<thead>
<tr>
<th>Indication</th>
<th>Evidence Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anovulatory effects:</td>
<td>4</td>
</tr>
</tbody>
</table>

A review article on the potential value of plants as sources of anti-fertility agents reported that black cohosh had anovulatory effects in vitro.
Lactation

Hormonal effect (potentially estrogenic/anti-estrogenic).\(^7\) Evidence level 4

It is unclear if black cohosh has an estrogenic and/or an anti-estrogenic effect.\(^7\) Nonetheless, a review article recommended that black cohosh be avoided during lactation due to its potential hormonal effect.\(^7\)

Constituents

- Triterpene glycosides:\(^8\) acetin, cimicifugoside, 27-deoxyacetin
- Organic acids: isoferulic acid,\(^8\) cimicifugic acids (A, B, E and F), fukinolic acid,\(^1\) caffeic acid,\(^1\) salicylic acid\(^1\)
- Cimicifugin\(^8\)
- Tannins\(^8\)
- Phytosterin\(^1\)

Pharmacology

- In some studies, black cohosh constituents bind to estrogen receptors in vitro or have an estrogenic effect.\(^10–13\) In other studies, black cohosh estrogenic or estrogen receptor-binding effects were not found.\(^14,15\)
- Black cohosh antagonizes the proliferation of cells induced by estradiol in vitro, thereby having anti-estrogenic activity.\(^16\)
- Black cohosh decreases luteinizing hormone (LH) levels, but has no effect on follicular stimulating hormone (FSH) levels.\(^12\)
- Black cohosh inhibits the growth of human breast cancer cells in vitro.\(^17,18\)
- Black cohosh has anti-inflammatory effects where the constituents caffeic acid, fukinolic acid and cimicifugic acids (A, B, E, F) were found to inhibit neutrophil elastase activity in vitro.\(^19\)
- Black cohosh possesses a central activity instead of a hormonal effect.\(^20\)

Drug interactions

Docetaxel\(^21\)
Doxorubicin\(^21\)

Parts used\(^8\)
Roots, rhizome

References
BLAZING STAR
Aletris farinosa

Synonyms/common names/related substances\(^1,2\)
Ague grass, ague root, aloerot, colic root, crow corn, devil’s-bit, stargrass, starwort, true-unicorn root, unicorn root, whitetube stargrass

Indications

<table>
<thead>
<tr>
<th>Indication</th>
<th>Evidence grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menstrual complaints(^3)</td>
<td>E</td>
</tr>
</tbody>
</table>

Pregnancy

<table>
<thead>
<tr>
<th>Indication</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uterine stimulant(^4)</td>
<td>4</td>
</tr>
</tbody>
</table>

A review article on the potential value of plants as sources of anti-fertility agents reported that blazing star was a uterine stimulant.\(^4\)

<table>
<thead>
<tr>
<th>Indication</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uterine relaxant(^1,5)</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Indication</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estrogenic(^6)</td>
<td>4</td>
</tr>
</tbody>
</table>

A herbal safety and drug interaction compendium reported that blazing star was a uterine relaxant.\(^1,5\) A botanical safety compendium reported that blazing star has estrogenic and oxytoxic activity.\(^6\) There are no reports in the medical literature of blazing star having estrogenic or oxytoxic activity nor are there reports that blazing star is contraindicated or safe during pregnancy.

Lactation

<table>
<thead>
<tr>
<th>Indication</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxytoxin antagonism(^6)</td>
<td>4</td>
</tr>
</tbody>
</table>

A botanical safety compendium reported that blazing star has estrogenic and oxytoxic activity.\(^6\) There are no reports in the medical literature of blazing star having estrogenic or oxytoxic activity nor are there reports that blazing star is contraindicated or safe during lactation.

Contraindication
Infectious or inflammatory gastrointestinal conditions\(^5\)

Caution
Hormone sensitive cancers (breast, uterine and ovarian)\(^3\)
Endometriosis\(^3\)
Uterine fibroids\(^3\)
Constituents

Diosgenin, volatile oils, and resin

Pharmacology

- Aletris was found to be estrogenic.\(^3\)
- Diosgenin is one of the starting hormones used in the manufacture of steroid hormones.\(^3\)
- Aletris may increase stomach acid secretion.\(^5\)
- Aletris is an irritant to the gastrointestinal tract.\(^5\)

Drug interactions

- Oxytocin drugs\(^6\)
- Acid-inhibiting drugs\(^5\)

Parts used

Root

References

BLUE COHOSH
Caulophyllum thalictroides

Synonyms/common names/related substances
Blue ginseng, caulophyllum, papoose root, squaw root, yellow ginseng

Indications

<table>
<thead>
<tr>
<th>Indication</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Induction of labor:</td>
<td>E</td>
</tr>
<tr>
<td>Pregnancy</td>
<td></td>
</tr>
<tr>
<td>Congestive heart failure:</td>
<td>2</td>
</tr>
<tr>
<td>Severe multi-organ hypoxic injury:</td>
<td>2</td>
</tr>
<tr>
<td>Abortifacient:</td>
<td>2</td>
</tr>
<tr>
<td>Uterine stimulant:</td>
<td>2</td>
</tr>
<tr>
<td>Emmenagogue:</td>
<td>4</td>
</tr>
<tr>
<td>Teratogenic:</td>
<td>4</td>
</tr>
</tbody>
</table>

Pregnancy

There is one report of a newborn infant whose mother ingested blue cohosh to promote uterine contractions. The newborn presented at birth with acute myocardial infarction associated with profound congestive heart failure and shock. The infant remained critically ill for several weeks, although he eventually recovered. The authors reported that all other causes of myocardial infarction were carefully excluded. The authors believed that these observed effects were due to the vasoactive glycosides and an alkaloid of blue cohosh known to produce toxic effects on the myocardium.

There is one report of severe multi-organ hypoxic injury in a child delivered ‘naturally’ with the aid of both blue and black cohosh (*Caulophyllum thalictroides*) who was not breathing at the time of birth. The child survived with permanent central nervous system damage. Blue cohosh possesses a vasoconstrictive glycoside which may have been responsible for the adverse effects.

A 21-year-old woman developed signs of nicotinic toxicity, i.e. tachycardia, diaphoresis, abdominal pain, vomiting, and muscle weakness and fasciculations after using blue cohosh in an attempt to induce an abortion. The saponins in blue cohosh are believed to be responsible for the uterine stimulant effect. A review article on the potential value of plants as sources of anti-fertility agents also reported that blue cohosh was a potential abortifacient, emmenagogue, and uterine stimulant.
Embryotoxic: Evidence level 4

The alkaloid methylcytisine, a constituent of blue cohosh, was shown to be teratogenic in rats. The alkaloid taspine, a constituent of blue cohosh, was shown to be highly embryotoxic in rats.

Oxytocic: Evidence level 4

A compendium for medicinal plants reported that blue cohosh may have oxytocic effects. Blue cohosh was not reported in the scientific literature as having an oxytocic effect.

Induces labor: Evidence level 4

A survey of midwives in the USA found that 64% use blue cohosh to induce labor. Blue cohosh is part of a combination of herbal medicines that have been traditionally used in the third trimester to prepare a woman for delivery; this preparation is called 'mother’s cordial' or ‘partus preparatus’. In addition to blue cohosh, mother’s cordial contains: squaw vine (*Mitchella ripens*), raspberry (*Rubus idaeus*), black cohosh (*Cimicifuga racemosa*) and false unicorn (*Chamaelirium luteum*).

Homeopathic blue cohosh (Caulophyllum)

Does not induce labor: Evidence level 1a

A systematic review concluded that there is insufficient evidence to recommend the use of homeopathic blue cohosh as a method of inducing of labor. Although caulophyllum is a commonly used homeopathic therapy to induce labor, the treatment strategy used in this review may not reflect routine practice of homeopathy. A homeopathic preparation of *C. thalictroides*, called Caulophyllum, beyond the potency (dilution) of 12C, does not contain any molecules of the original substance.

Lactation

Possible cardiotoxic effects: Evidence level 4

Blue cohosh contains vasoactive glycosides and an alkaloid known to produce toxic effects on the myocardium of laboratory animals. Blue cohosh is not reported in the scientific literature as being either contraindicated or safe in lactation.

Constituents

- Triterpene saponins: caulophyllogenin, hederagenin, caulosaponin
- Alkaloids: thalictroidine, taspine, magnoflorine, anagyrine, baptifoline, 5,6-dehydro-α-isolupanine, α-isolupanine, lupanine, N-methylcytisine, sparteine
Toxicology
- Blue cohosh contains vasoactive glycosides and an alkaloid known to produce toxic effects on the myocardium of laboratory animals.
- Blue cohosh was reported to constrict coronary arteries and to decrease the flow of oxygen to the heart.14
- The alkaloid methylcytisine was shown to cause symptoms of nicotinic toxicity.6
- Methylcytisine was shown to be teratogenic in rats.9
- Taspine was shown to be embryotoxic in rats.9

Pharmacology
- Blue cohosh extract was shown to enhance estradiol binding to estrogen receptors and to increase estradiol-induced transcription activity in estrogen-responsive cells.1
- Blue cohosh was shown to decrease luteinizing hormone levels and to increase serum ceruloplasmin oxidase activity, which are measures of estrogenic activity in the liver.1

Drug interactions
Anti-diabetic drugs1
Cardiovascular drugs3,10
Nicotine6

Parts used1
Rhizome and root

References
BORAGE
Borago officinalis

Synonyms/common names/related substances
Borage oil, bugloss, burage, burrage, huile de bourrache, starflower

Indications

Oral
- Rheumatoid arthritis: Evidence grade B1
- *Atopic dermatitis:* Evidence grade B1
- Adult periodontitis: Evidence grade B1
- Attenuates stress: Evidence grade B2
- Hyperlipidemia: Evidence grade C
- Atherosclerosis prevention: Evidence grade C
- Skin irritation: Evidence grade C
- Gastric cancer prevention: Evidence grade D
- Hypertension: Evidence grade E

One randomized controlled trial reported that several clinical symptoms of atopic dermatitis improved compared with placebo, but the overall response to borage oil did not reach statistical significance. This study, however, found statistically significant benefits of borage oil on atopic dermatitis in a subgroup of the research subjects.

Enteral
- Acute respiratory distress syndrome (with eicosapentaeanoic acid (EPA; fish oil) and antioxidants): Evidence grade B1

Topical
- Infantile seborrheic dermatitis: Evidence grade B2
Pregnancy

Teratogenic and induces labor:15 Evidence level 1a

A review of randomized double-blind studies was conducted on the benefit of borage oil in the treatment of rheumatoid arthritis.15 Evidence from published research indicated that the γ-linolenic acid (GLA) component of borage oil increases prostaglandin E levels.15 It was recommended that borage oil be contraindicated in pregnancy given the teratogenic and labor-inducing effects of prostaglandin E agonists.15

Minimal risk:16 Evidence level 3

A study compared the effects of diets containing GLA from borage oil and other sources on reproduction, pup development and pup brain fatty acid composition in mice.16 An increase in dietary GLA resulted in an increase in brain long chain n-6 fatty acids (20:4n-6 and 22:4n-6).16 The authors did not report any adverse effects associated with the ingestion of borage oil.16

Fetotoxic:17 Evidence level 4
Mutagen:17 Evidence level 4
Hepatotoxic:18,19 Evidence level 4
Pneumotoxic:18,19 Evidence level 4
Genotoxic:18,19 Evidence level 4
Neurotoxic:18,19 Evidence level 4
Cytotoxic:18,19 Evidence level 4

Borage oil has been reported to contain small amounts of pyrrolizidine alkaloids.20 Pyrrolizidine alkaloids are hepatotoxic, pneumotoxic, genotoxic, neurotoxic and cytotoxic, and may cause hepatic veno-occlusive disease.18,19 A compendium on complementary and alternative medicine reported that therapeutic doses of borage seed oil can provide amounts of pyrrolizidine alkaloids that can reach toxic levels.21 Borage seed oil containing pyrrolizidine alkaloids, dosed at 1–2 g/day, may provide approximately 10 μg of pyrrolizidine alkaloids, which exceeds the German Commission E recommendation by 10 times.21,22

Anti-gonadotrophic activity:23 Evidence level 4

A review article on the potential value of plants as sources of anti-fertility agents reported that borage had anti-gonadotrophic activity in rats.23
Lactation

Minimal risk: 24 Evidence level 1b

A cross-sectional study was conducted on the effect of dietary supplementation of borage oil on the breast milk of atopic mothers. Twenty atopic mothers received borage oil for 1 week (230 mg or 460 mg of GLA) and 20 non-atopic mothers received a placebo. Arachidonic acid was found to be lower in breast milk of atopic mothers compared with non-atopic mothers. Supplementation of the atopic mothers with borage oil significantly increased the levels of GLA and dihomo-GLA in breast milk in a dose-related way, but the level of arachidonic acid was not increased. The authors did not report any adverse effects of borage oil supplementation on the mother or the infant.

Mutagen: 17 Evidence level 4
Hepatotoxic: 18, 19 Evidence level 4
Pneumotoxic: 18, 19 Evidence level 4
Genotoxic: 18, 19 Evidence level 4
Neurotoxic: 18, 19 Evidence level 4
Cytotoxic: 18, 19 Evidence level 4

Borage oil has been reported to contain small amounts of pyrrolizidine alkaloids. Pyrrolizidine alkaloids are hepatotoxic, pneumotoxic, genotoxic, neurotoxic and cytotoxic, and may cause hepatic veno-occlusive disease.

Constituents

GLA
Pyrrolizidine alkaloids

Pharmacology

- Diets rich in borage oil were shown to reduce systolic blood pressure, lower aldosterone, increase plasma renin and inhibit adrenal responsiveness to angiotensin II.
- Borage oil alters stress reactivity in humans by attenuating blood pressure and heart rate responses to stress, increasing skin temperature, improving task performance, and augment the arterial baroreflex control of vascular resistance.
- The borage oil constituent GLA increases prostaglandin E levels and reduces T cell proliferation in vivo.
- Borage oil reverses epidermal hyperproliferation.
GLA supplementation was shown to decrease plasma triglyceride, increase high-density lipoprotein cholesterol, and significantly decrease total cholesterol and low-density lipoprotein cholesterol.9

GLA supplementation was shown to decrease platelet aggregation and increase bleeding time by 40%.9

Borage oil supplementation does not improve insulin sensitivity in vivo.29

Drug interactions

Anesthesia10,30,31

Anti-convulsant/anti-seizure drugs31

Anti-coagulant/anti-platelet drugs9

Nonsteroidal anti-inflammatory drugs2,15

Phenothiazines32

Parts used17

Seed and leaves

References

CALAMUS
Acorus calamus

Synonyms/common names/related substances
Cinnamon sedge, gladon, grass myrtle, myrtle flag, myrtle sedge, sweet cane, sweet cinnamon, sweet flag, sweet grass, sweet myrtle, sweet root, sweet rush, sweet sedge

Indications
Urinary tract disorders, digestive stimulant: Evidence grade E

Pregnancy
Potentially hepatocarcinogenic: Evidence level 3
Calamus contains β-asarone, a volatile oil which has been shown to be hepatocarcinogenic in animal studies and in laboratory studies on human lymphocytes.

Emmenagogue: Evidence level 4
Potential abortifacient: Evidence level 4
A review article on the potential value of plants as sources of anti-fertility agents reported that calamus was an emmenagogue and a potential abortifacient.

Lactation
Potentially hepatocarcinogenic: Evidence level 3
Calamus contains β-asarone, a volatile oil which has been shown to be hepatocarcinogenic in animal studies and in laboratory studies on human lymphocytes.

Constituents
Essential oils: α- and β-asarone (volatile ethers)

Toxicology
LD₅₀ of the tincture (1:2): 5 mL/kg
Dietary levels of 500–5000 ppm of oil are carcinogenic in animals

Pharmacology
- β-Asarone is potentially hepatocarcinogenic. Once β-asarone has undergone metabolic 1’-hydroxylation in the liver, its carcinogenic potency is low
and its major metabolite (2,4,5-trimethoxycinnamic acid) was not reported as carcinogenic.7,8,11

- Calamus oil inhibits monoamine oxidase (MAO) activity and stimulates D- and L-amino oxidase.12
- β-Asarone has anti-spasmodic activity in vitro in the tracheal, intestinal, uterine, bronchial and vascular smooth muscle.12,13
- Calamus has a sedative effect and potentiates the barbiturate effect (increased sleeping time, reduction in body temperature).12
- α-Asarone decreases low-density lipoprotein cholesterol and triglycerides and increases high-density lipoproteins.14,15
- α-Asarone is non-mutagenic in mice.16

Drug interactions

- Anti-coagulant drugs17
- MOA inhibitor drugs12
- Sedative/barbiturate drugs12

Part containing toxins10,18

Rhizome

References

62 Herbal medicines

CALENDULA

Calendula officinalis

Synonyms/common names/related substances

Garden marigold, gold-bloom, holligold, marigold, marybud, pot marigold

Indications

Topical

<table>
<thead>
<tr>
<th>Indication</th>
<th>Evidence grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burns:</td>
<td>B2</td>
</tr>
<tr>
<td>Acute otitis media (with Allium sativum, Verbascum thapsus, and Hypericum perforatum):</td>
<td>B2</td>
</tr>
<tr>
<td>Chronic colitis (with Taraxacum officinale, Hypercium perforatum, Melissa officinalis, and Foeniculum vulgare):</td>
<td>C</td>
</tr>
<tr>
<td>Wound healing:</td>
<td>D</td>
</tr>
<tr>
<td>Skin inflammation:</td>
<td>E</td>
</tr>
</tbody>
</table>

Homeopathic C. officinalis (Calendula)

<table>
<thead>
<tr>
<th>Indication</th>
<th>Evidence grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wound healing:</td>
<td>E</td>
</tr>
</tbody>
</table>

Pregnancy

Oral

<table>
<thead>
<tr>
<th>Indication</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uterotonic effect:</td>
<td>3</td>
</tr>
<tr>
<td>Potential abortifacient:</td>
<td>4</td>
</tr>
<tr>
<td>Emmenagogue:</td>
<td>4</td>
</tr>
<tr>
<td>Estrogenic:</td>
<td>4</td>
</tr>
</tbody>
</table>

Calendula was shown to have a uterotonic effect when applied to isolated rabbit and guinea pig uterine horn. A review article on the potential value of plants as sources of anti-fertility agents reported that calendula was a potential abortifacient and an emmenagogue, and that it had estrogenic activity.
A compendium on herb toxicology and drug interactions reported that when taken orally, calendula may have spermatocide and anti-blastocyst activity.\(^{11}\) Orally, calendula was not reported in the scientific literature as having spermatocide or anti-blastocyst activity.

Topical

| Unknown: | Evidence level 5 |

Topically, calendula was not reported in the scientific literature as being either safe or contraindicated during pregnancy.

Homeopathic C. officinalis (Calendula)

| Minimal risk: | Evidence level 5 |

A homeopathic preparation of *C. officinalis*, called Calendula, beyond the potency (dilution) of 12C, does not contain any molecules of the original substance. Homeopathic calendula is of minimal risk in pregnancy.

Lactation

| Unknown: | Evidence level 5 |

Calendula was not reported in the scientific literature as being either safe or contraindicated during lactation.

Homeopathic C. officinalis (Calendula)

| Minimal risk: | Evidence level 5 |

A homeopathic preparation of *C. officinalis*, called Calendula, beyond the potency (dilution) of 12C, does not contain any molecules of the original substance. Homeopathic calendula is of minimal risk in lactation.

Constituents

- Faradiol esters\(^{12}\)
- Triterpene alcohols: heliaol, taraxasterol, psi-taraxasterol, \(\alpha\)-amyrin, \(\beta\)-amyrin, lupeol, taraxerol, cycloartenol, 24-methyl-encycloartanol, tirucalla-7,24-dienol and dammaradienol
- Saponins\(^{14}\)
Toxicity
- LD$_{50}$ (intravenous): 15375 mg/kg to 526 mg/100 g
- LD$_{50}$ (subcutaneous): 1545 mg/mouse
- LD$_{100}$ (intraperitoneal): 15580 mg/kg

Pharmacology
- Calendula has anti-inflammatory and anti-edematous properties, and the faridol esters are believed to have the most pronounced anti-inflammatory effect.6,12,16
- Topically, the triterpene and flavonoid constituents were shown to have anti-inflammatory activity \textit{in vivo}.6,13,16
- Topically, calendula increases physiologic regeneration and epithelialization of surgical wounds.17
- Calendula may have immune-stimulating activity \textit{in vitro}.18
- Calendula has anti-bacterial and anti-viral activity.19,20
- Calendula has anti-mutagenic properties.14

Drug interactions
Barbiturates21
Drugs with sedative properties21

Part used11
Flowers

References
Herbal medicines

CHASTETREE
Vitex agnus-castus

Synonyms/common names/related compounds
Agnolyt, agnus castus, agnus-castus, chaste berry, chaste tree, chaste tree berry, chastetree, gattilier, hemp tree, monk’s pepper, vitex, Vitex agnus castus

Indications

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Premenstrual syndrome</td>
<td>B1</td>
</tr>
<tr>
<td>Cyclic mastalgia</td>
<td>B1</td>
</tr>
<tr>
<td>Hyperprolactinemia</td>
<td>B1</td>
</tr>
<tr>
<td>Infertility</td>
<td>B2</td>
</tr>
<tr>
<td>Acne</td>
<td>E</td>
</tr>
<tr>
<td>Menstrual disorders</td>
<td>E</td>
</tr>
<tr>
<td>Increases lactation</td>
<td>E</td>
</tr>
</tbody>
</table>

Homeopathic preparation

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infertility</td>
<td>B1</td>
</tr>
</tbody>
</table>

Pregnancy

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emmenagogue</td>
<td>Level 4</td>
</tr>
<tr>
<td>Uterine stimulant</td>
<td>Level 4</td>
</tr>
</tbody>
</table>

A review article on the potential value of plants as sources of anti-fertility agents reported that chastetree was an emmenagogue.

Prevention of miscarriages

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prevention of miscarriages</td>
<td>Level 4</td>
</tr>
</tbody>
</table>

A compendium on herbal medicine reported that chastetree is used by some clinicians during the first trimester of pregnancy to prevent miscarriages in patients with progesterone deficiency. There are no reports in the scientific literature that chastetree prevents miscarriages.
Chastetree may have estrogenic and progesterone activity.18

Homeopathic preparation

| Increases progesterone: 15 | Evidence level 1a |

A prospective, randomized, placebo-controlled, double-blind study was conducted on a homeopathic preparation of chastetree for women with fertility disorders.15 The researchers observed a non-significant increase in fertility and a significant increase of progesterone during the luteal phase.15

Lactation

Conflicting evidence

| Increases lactation: 5,12,14 | Evidence level 4 |
| Decreases lactation: 4 | Evidence level 4 |

Compendia on herbal medicine and a plant monograph report that chastetree increases lactation.5,12,14 Other sources report that chastetree decreases lactation as it suppresses prolactin release.4 There are no reports in the scientific literature of chastetree either increasing or decreasing lactation.

Chastetree may have estrogenic and progesterone activity.18

Homeopathic preparation

| Increases progesterone: 15 | Evidence level 1a |

A prospective, randomized, placebo-controlled, double-blind study was conducted on a homeopathic preparation of chastetree for women with fertility disorders.15 The researchers observed a non-significant increase in fertility and a significant increase of progesterone during the luteal phase.15

Constituents1

- Essential oils:14 limonene, cineol, pinene, and sabinene
- Iridoid glycosides:5,19 aucubin and agnoside
- Flavonoids:5,14 casticin, kaempferol, quercetagetin, orientin, and isovitexin
- Diterpenes:12,14,19,20 including vitexilactone, rotundifuran, and 6-β,7-β-diacetoxy-13-hydroxy-labda-8,14-dien
- Essential fatty acids:12 oleic acid, linolenic acid, palmitic acid, and stearic acid
Toxicity
- No information available.\(^5\)
- The LD\(_{50}\) of *Vitex leucoxylon* leaf, same genus as chastetree, was >3000 mg/kg (ethanol extract) and 800–1200 mg/kg (cold aqueous infusion).\(^21\)

Pharmacology
- Chastetree may have estrogenic and progesterone activity.\(^18\)
- Chastetree selectively binds to β-estrogen receptors (heart, vasculature, bone and bladder).\(^22\)
- Chastetree may affect dopamine, acetylcholine, and opioid receptors.\(^20\)
- In high doses, chastetree has agonist effects on pituitary dopamine (D2) receptors.\(^23,24\)
- In women with hyperprolactinemia, chastetree appears to suppress prolactin release and normalize luteal phase defects in the menstrual cycle.\(^11\)
- In men, lower doses of chastetree increase prolactin release while higher doses suppress prolactin release; chastetree does not appear to affect testosterone levels.\(^25\)
- Chastetree may inhibit the growth of breast, ovarian, cervical, gastric, colon, and lung cancer cells.\(^26,27\)
- Chastetree essential oils have anti-bacterial and anti-fungal properties.\(^5\)

Drug interactions
- Anti-psychotic drugs\(^23,24\)
- Dopamine agonists\(^20,23,24\)
- Oral contraceptives\(^28\)
- Hormone replacement therapy\(^28\)

Part used\(^29\)
Fruit

References

COFFEE
Coffea arabica, C. canephora, C. robusta, C. liberica

Synonyms/common names/related substances
Cafe, caffea, espresso, java, mocha

Indications

<table>
<thead>
<tr>
<th>Effect</th>
<th>Evidence grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increases mental alertness and performance</td>
<td>B1</td>
</tr>
<tr>
<td>Decreases risk of Parkinson disease</td>
<td>C</td>
</tr>
<tr>
<td>Decreases risk of symptomatic gallbladder disease in men</td>
<td>C</td>
</tr>
<tr>
<td>Decreases risk of gallstones in women</td>
<td>C</td>
</tr>
<tr>
<td>Rectal cancer prevention</td>
<td>C</td>
</tr>
</tbody>
</table>

Pregnancy

<table>
<thead>
<tr>
<th>Effect</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spontaneous abortion</td>
<td>1b</td>
</tr>
<tr>
<td>Increased risk of stillbirth</td>
<td>1b</td>
</tr>
<tr>
<td>Low birthweight infants</td>
<td>1b</td>
</tr>
</tbody>
</table>

A case–control study of 3149 pregnant women reported that serum paraxanthine, a caffeine metabolite, concentration was higher in the women who had spontaneous abortions than in the controls. Drinking more than six cups of coffee per day increases the risk of spontaneous abortions and that only extremely high serum paraxanthine concentrations are associated with spontaneous abortion.

A prospective follow-up study on 18478 singleton pregnancies in women with valid information about coffee consumption during pregnancy reported that pregnant women who drink eight or more cups of coffee per day have double the risk of stillbirth, when compared to women who do not drink coffee during pregnancy.

A large prospective study on 2291 mothers reported that women consuming more than 600 mg of caffeine per day are at greater risk for having low birthweight infants. A prospective study on 63 women reported that pregnant non-smokers consuming caffeine more than 300 mg/day had statistically significant lower weights of newborns and placentas ($p<0.05$).
Teratogenic compounds:14–17 Evidence level 3

Elevated caffeine intake causes histopathologically teratogenic effects on newborn rat cornea.14 A study on the effects of coffee during pregnancy on mice reported long-term teratopharmacologic and behavioral alterations in the offspring of pregnant mice that consumed coffee.15 A similar study on mice reported teratogenic effects associated with coffee ingestion during pregnancy.17 A review study, however, reported that when caffeine is administered in fractioned quantities during the day, as it is the case with human caffeine intake, caffeine is no longer a teratogen in animals.18

Impairs trace mineral absorption in fetus:19 Evidence level 3

A study on the effect of coffee consumption on pregnancy and lactation in mice19 reported that maternal coffee intake may impair mobilization of trace elements from liver reserves in early life and that this may result in reduced hemoglobin synthesis.19

Harmful to the fetus:20 Evidence level 4

Crosses the placenta:20 Evidence level 4

A compendium on the safety of drugs in pregnancy and lactation reported that over three cups of coffee a day (300 mg of caffeine) may be harmful to the fetus.20 The compendium also reported that caffeine crosses the human placenta where fetal blood and tissue levels are similar to maternal concentrations.20

Three cups of coffee throughout the day – possibly safe:21,22 Evidence level 4

A drug compendium and a review study reported that three cups of coffee (approximately 300 mg of caffeine) consumed throughout the day seems safe during pregnancy.21,22

Estrogenic:23 Evidence level 4

A review article on the potential value of plants as sources of anti-fertility agents reported that coffee has estrogenic activity.23

Lactation

Teratogenic compounds:14–17 Evidence level 3

Two studies reported teratogenic and behavioral alterations in animals whose mothers were fed coffee.14,15 A similar study on mice reported teratogenic effects associated with coffee ingestion during pregnancy.17 Since caffeine appears in breast milk at half the concentration as in the mother’s plasma, newborns may
be exposed to teratogenic compounds.24 A review study, however, reported that when caffeine is administered in fractioned quantities during the day, as it is the case with human caffeine intake, caffeine is no longer a teratogen in animals.18

| Impairs trace mineral absorption in newborn: 19 | Evidence level 3 |

A study on the effects of coffee consumption on pregnancy and lactation in mice reported that maternal coffee intake may impair mobilization of trace elements from liver reserves in early life and that this may result in reduced hemoglobin synthesis.19

| May cause sleeping disorders: 25 | Evidence level 4 |

A compendium on herbal medicine reported that nursing mothers who consume caffeine may have infants with sleeping disorders.25

| Stimulates breast milk production: 22 | Evidence level 4 |

A review study reported that coffee consumption stimulates breast milk production in women and that it does not change breast milk composition.22

Contraindications

- Cardiac problems16
- Kidney disease16
- Hyperthyroidism16

Caution

People who have a predisposition to convulsion or anxiety should not drink more than five cups or 500 mg of caffeine per day.16

Toxic constituents

- Methylxanthine alkaloid: caffeine16
- Polyphenolic acid: chlorogenic acid16
- Caffeol1
- Diterpenes1

Toxicity

- Toxic dose of caffeine: 1 g16
- Lethal dose of caffeine: 10 g (adult) and 5.3 g (child)16,26

Pharmacology

- Caffeine is a powerful stimulant of the central nervous system, respiration, and skeletal muscles.16,26
- Caffeine causes cardiac stimulation, coronary dilation, smooth muscle relaxation, increases blood pressure, increases heart rate and contractility, and diuresis.1,26,27
Coffee stimulates gastric secretions.28
Caffeine crosses the human placenta where fetal blood and tissue levels are similar to maternal concentrations.20
Chlorogenic acid, a constituent in coffee, is reported to have stimulant, diuretic, choleretic properties and allergenic properties.26,29
Chlorogenic acid may raise homocysteine levels.30
Cafestol, a diterpene in unfiltered coffee, was shown to raise plasma triacylglycerol levels in humans.31
Caffeine has anti-platelet activity.32,33

Drug interactions
Acetaminophen (paracetamol)34
Alendronate35
Anti-coagulant/anti-platelet drugs32,33
Anti-diabetic drugs34
Aspirin32,33,36
Benzodiazepines35
β-Adrenergic agonists37
Cimetidine35
Clozapine38,39
Central nervous system stimulants38,40
Disulfiram37
Ephedrine34,41
Ergotamine37
Estrogen42
Lithium43,44
Mexiletine35
Monoamine oxidase inhibitors34
Oral contraceptives35
Phenylpropanolamine35
Quinolones45–47
Riluzole35
Terbinafine35
Theophylline35
Verapamil35

Part used16
Dried ripe seed

References
76 Herbal medicines

35. MICROMEDEX. Micromedex Healthcare Series. Englewood, CO: MICROMED EX.
Herbal medicines

CRANBERRY
Vaccinium macrocarpon, V. oxycoccos

Synonyms/common names/related compounds
American cranberry, arandano Americano, arandano trepador, cranberries,
European cranberry, grosse moosbeere, kranbeere, large cranberry, moosebeere,
mossberry, ronce d’Amerique, small cranberry, trailing swamp cranberry,
tsuru-kokemomo

Indications

Extract
Prevention of urinary tract infections: Evidence grade A
A systematic review concluded that the small number of poor-quality trials gives
no reliable evidence of the effectiveness of cranberry juice for the prevention of
urinary tract infections. The systematic review also reported that other
cranberry products such as cranberry capsules may be more acceptable.

Juice
Prevention of urinary tract infections: Evidence grade B2
Urinary tract infections: Evidence grade E
Periodontal disease: Evidence grade E
A systematic review concluded that the small number of poor-quality trials gives
no reliable evidence of the effectiveness of cranberry juice for the prevention
of urinary tract infections. The two studies above were not included in the
systematic review.

Pregnancy
Commonly used: Evidence level 1b
The authors reported that cranberry was one of the most commonly used herbs during pregnancy, mostly for urinary tract infections. This study did not evaluate the safety of cranberry during pregnancy. There are no reports in the scientific literature of cranberry being either safe or contraindicated during pregnancy.

Safety
Unknown: Evidence level 5
A survey was conducted on 400 Norwegian postpartum women. The authors reported that cranberry was one of the most commonly used herbs during pregnancy, mostly for urinary tract infections. This study did not evaluate the safety of cranberry during pregnancy. There are no reports in the scientific literature of cranberry being either safe or contraindicated during pregnancy.
Food

Minimal risk: Evidence level 4

A herbal compendium reported that cranberry is of minimal risk during pregnancy when consumed in food quantities.12

Lactation

Unknown: Evidence level 5

There are no reports in the scientific literature of cranberry being either safe or contraindicated during lactation.

Food

Minimal risk: Evidence level 4

A herbal compendium reported that cranberry is of minimal risk when consumed in food quantities.12

Caution

Kidney stones13

Constituents14

Proanthocyanidins
Triterpenoids
Lectins
Catechins
Ascorbic acid
Benzoic acid
Quinic acid
Citric acid
Malic acid

Toxicity

● Consuming up to 4 L/day of cranberry juice was shown to be non-toxic in healthy individuals.15
● Ingesting large amounts of cranberry juice (>3 L/day) may result in diarrhea, gastrointestinal distress, other gastrointestinal symptoms or toxicity in infants or young children.16–18

Pharmacology

● The proanthocyanidins in cranberry interfere with bacterial adherence to the urinary tract epithelial cells.19–27
In the case of *Escherichia coli*, the cause of most urinary tract infections, proanthocyanidins were shown to wrap around these bacteria and prevent their adherence to the urinary tract wall.\(^7,28,29\)

Cranberry juice cocktail was shown to inhibit adherence in 77 clinical isolates of *E. coli* obtained from patients with diagnosed urinary tract infections and anti-adherence activity against Gram-negative rods.\(^7\)

The fructose in cranberries was shown to contribute to the anti-bacterial activity of cranberry.\(^25,29,30\)

Cranberry does not appear to have the ability to dislodge bacteria that have already adhered to the urinary tract epithelial cells.\(^31\)

Cranberry juice was shown to have anti-bacterial activity against *E. coli, Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa*, and *Proteus mirabilis*.\(^7,24,29\)

Cranberry was shown to have anti-viral action against the poliovirus type 1.\(^32\)

Cranberry may prevent the adherence of *Helicobacter pylori* in the stomach.\(^28\)

Cranberry may prevent adhesion of plaque bacteria that cause periodontal disease.\(^8\)

Cranberry may have anti-oxidant and anti-carcinogenic activity.\(^33,34\)

Drug interactions\(^1\)

Warfarin\(^35,36\)

Drugs metabolized by cytochrome P450\(^9,35,36\)

Part used

Fruit\(^1\)

References

82 Herbal medicines

DAMIANA
Turnera aphrodisiaca

Synonyms/common names/related compounds
Damiana aphrodisiaca, damiana herb, damiana leaf, herba de la pastora, Mexican damiana, mizibcocc, old woman’s broom, rosemary, *Turnerae diffusae folium*, *Turnerae diffusae herba*

Indications

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female sexual dysfunction (with ginseng, ginkgo, L-arginine, multivitamins and minerals):</td>
<td>B1</td>
</tr>
<tr>
<td>Weight loss (with yerbe mate and guarana):</td>
<td>B2</td>
</tr>
<tr>
<td>Sexual dysfunction:</td>
<td>E</td>
</tr>
</tbody>
</table>

Pregnancy

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uterine stimulant:</td>
<td>4</td>
</tr>
</tbody>
</table>

A review article on the potential value of plants as sources of anti-fertility agents reported that herbs from the *Turnera* spp., including damiana, are uterine stimulants.

Lactation

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety unknown:</td>
<td>5</td>
</tr>
</tbody>
</table>

There are no reports in the scientific literature of damiana being either safe or contraindicated during lactation.

Constituents

- Arbutin
- Flavonoids
- Flavone glycosides

Toxicity

- An individual exhibited tetanus-like convulsions and paroxysms, similar to those of rabies or strychnine poisoning, following the ingestion of approximately 200 g of damiana.
- High doses of arbutin (1 g) are considered toxic – 100 g of damiana plant material would have to be consumed to equal a dose of 1 g of arbutin.
Pharmacology
- Damiana contains high levels of phyto-progestins, which may increase the progestin activity of saliva.9
- Progesterone-binding herbs, such as damiana, were shown to have neutral or antagonist effects on breast cancer cell lines.9
- Damiana extracts are reported to have central nervous system depressant activity.8
- Damiana was shown not to have hypoglycemic effects.10
- Arbutin may have anti-bacterial properties.8

Drug interactions
Diabetic drugs (when using non-water extract or whole herb)8

Parts used1
Leaf and stem

References
DANDELION
Taraxacum officinale

Synonyms/common names/related compounds
Blowball, cankerwort, common dandelion, dandelion herb, dandelion root, lion’s tooth, pissenlit, priest’s crown, swine snout, T. herba, taraxacum, wild endive.

Indications

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hepatitis B (multiple herb combination Jiedu Yanggan Gao):²</td>
<td>B2</td>
</tr>
<tr>
<td>Urinary tract infections (with uva ursi):³</td>
<td>C</td>
</tr>
<tr>
<td>Non-specific colitis (with St. John’s wort, lemon balm, calendula and fennel):⁴</td>
<td>C</td>
</tr>
<tr>
<td>Diabetes:⁵</td>
<td>E</td>
</tr>
<tr>
<td>Anti-inflammatory effects:⁶</td>
<td>E</td>
</tr>
<tr>
<td>Diuretic:⁷</td>
<td>E</td>
</tr>
</tbody>
</table>

Pregnancy

Unknown: Evidence level 5

There are no reports in the scientific literature of dandelion being either safe or contraindicated during pregnancy.

Food amounts

Minimal risk:⁸ Evidence level 4

A herbal medicine compendium reported that dandelion is of minimal risk during pregnancy when consumed in food amounts.

Lactation

Unknown: Evidence level 5

There are no reports in the scientific literature of dandelion being either safe or contraindicated during lactation.
Caution
Bile duct and intestinal obstruction
Kidney disease

Constituents

Root
Eudesmanolide and germacranolide sesquiterpene lactones
Triterpene alcohols and phytosterols
γ-Butyrolactone glycoside: taraxacose
Caffeic acid and p-hydroxyphenylacetic acid
Potassium
Inulin

Leaf
Germacranolide sesquiterpene lactones
Triterpenes: cycloartenol
Phytosterols
p-Hydroxyphenylacetic acid
Flavonoids: apigenin-7-glucoside, luteolin-7-glucoside
Furan fatty acids
Potassium

Toxicity

Root
LD$_{50}$ (intraperitoneally): 36.6 g/kg

Above ground parts
LD$_{50}$ (intraperitoneally): 28.8 g/kg

Pharmacology
- The bitter constituents in dandelion root increase bile flow.
- Dandelion was shown to have diuretic and anti-inflammatory effects.
- Dandelion may have some hypoglycemic activity.
- The constituent taraxacin (eudesmanolides) is an appetite stimulant.
- Dandelion may have a mild laxative effect.
- Dandelion has been shown to have anti-tumor activity in vitro.

Drug interactions
- Antacids
- Anti-diabetic drugs
88 Herbal medicines

H2-blockers
Lithium
Potassium-sparing diuretics
Proton pump inhibitors

Part used
Whole plant

References

DEADLY NIGHTSHADE
Atropa belladonna

Synonyms/common names/related substances
Belladonna, dwale, devil’s cherries, poison black cherry, devil’s herb, divale, dwayberry, great morel, naughty man’s cherries

Indications

A. belladonna herbal or pharmaceutical preparations

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irritable bowel syndrome(^2,3) (in combination with other drugs):</td>
<td>B1</td>
</tr>
<tr>
<td>Migraine headaches(^4,5) (in combination with other drugs):</td>
<td>B1</td>
</tr>
<tr>
<td>Premenstrual syndrome:</td>
<td>B1</td>
</tr>
<tr>
<td>Autonomic nervous system conditions:(^7,8)</td>
<td>B2</td>
</tr>
<tr>
<td>Airway obstruction:</td>
<td>C</td>
</tr>
</tbody>
</table>

Homeopathic A. belladonna (Belladonna)

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Migraine headaches:</td>
<td>B1</td>
</tr>
<tr>
<td>Otitis media:</td>
<td>C</td>
</tr>
</tbody>
</table>

Pregnancy

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drug derivative – minimal side-effects during labor:(^12,13)</td>
<td>1a</td>
</tr>
</tbody>
</table>

Drugs derived from Atropa are sometimes used during labor or abortions.\(^12,11\) Prifinum bromide, an atropine drug, was administered to women in labor as part of a controlled trial.\(^12\) The atropine administered led to a shorter period of labor, normal intra-partum hemorrhage and normal amniotic fluid.\(^12\) The atropine had no effect on fetal heart rate or AGPAR score.\(^12\)

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teratogenic – potential birth defects:(^14,15)</td>
<td>2</td>
</tr>
<tr>
<td>Teratogenic – potential eye malformation:(^16)</td>
<td>3</td>
</tr>
<tr>
<td>Teratogenic – potential respiratory abnormalities:(^17)</td>
<td>4</td>
</tr>
</tbody>
</table>
Teratogenic – potential penile abnormalities (hypospadia): Evidence level 4

Teratogenic – potential ear malformations: Evidence level 4

Although no direct relationship between first trimester use of atropine and birth defects was found, a study reported an increase in birth defects in the offspring of mothers who had taken belladonna. Scopolamine and hyoscyamine were found to have teratogenic effects in animals. The eyes of atropine-exposed chicken embryos were found to have abnormal features and appearance. An evidenced-based compendium on natural health products reported that there are anecdotal reports that the use of belladonna during pregnancy may increase the risk of respiratory abnormalities, hypospadias (penile urethral malformation in males), and ear malformation.

No adverse effect with phenothiazine – first trimester: Evidence level 2

A case report in the scientific literature reported that belladonna supplementation, along with phenothiazine, to two pregnant women with sialorrhea and hyperemesis resulted in no side effects in the women or in the newborn.

Temporary mydriasis: Evidence level 2

A neonate whose mother had recently taken the anti-depressant amitriptyline developed fixed dilated pupils after a modest dose of intravenous atropine. The neonate’s pupils became reactive again after 7 hours and there were no neurological sequelae.

Homeopathic A. belladonna (Belladonna)

Minimal risk: Evidence level 1a

A homeopathic preparation of A. belladonna, called Belladonna, beyond the potency (dilution) of 12C, does not contain any molecules of the original substance. A randomized controlled trial found that Belladonna did not produce any significant symptoms that were different to placebo.

Lactation

Potentially unsafe – caution: Evidence level 4

A compendium on natural health products reported that Atropa decreases the production of breast milk due to its anti-cholinergic properties and that it is secreted in breast milk. Atropa was not reported in the scientific literature as either being safe or causing harm to the nursing infant.
Contraindications
Glaucoma

Constituents
Alkaloids: atropine (hyoscyamine), scopolamine (hyoscine)

Toxicology
Lethal dose (children): 10–100 mg of atropine, 5–50 g of powdered deadly nightshade, more than three berries

Pharmacology
- Atropine acts on the muscarinic receptors where it blocks the parasympathetic effects on smooth muscle, cardiac muscle, and glandular cells.
- Atropine blocks the activity of the vagus nerve, thereby increasing the firing rate of the sinoatrial node.
- Atropine reduces heart rate and peristalsis, increases bladder pressure, relaxes the bile duct, reduces the production of saliva and gastric fluids, and reduces the secretions from the pancreas, eye, and bronchi.
- Deadly nightshade is believed to have no or very little effect on blood pressure control.

Drug interactions
Anti-cholinergic drugs

Parts containing toxins
Roots, leaves, berries, flowers

References

DONG QUAI
Angelica sinensis

Synonyms/common names/related substances
Chinese angelica, dang gui, danggui, dong qua, dong-quai, ligustilides, phytoestrogen, tan kue bai zhi, tang kuei

Indications

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Premenstrual syndrome (within a multiple herb Chinese formula)</td>
<td>A</td>
</tr>
<tr>
<td>Abdominal pain</td>
<td>B2</td>
</tr>
<tr>
<td>Pulmonary hypertension in patients with chronic obstructive pulmonary disease (COPD) (with nifedipine)</td>
<td>B2</td>
</tr>
<tr>
<td>Cerebral thrombosis (within a multiple herb Chinese formula)</td>
<td>C</td>
</tr>
<tr>
<td>Cirrhosis</td>
<td>C</td>
</tr>
<tr>
<td>Coronary heart disease</td>
<td>C</td>
</tr>
<tr>
<td>Idiopathic thrombocytopenic purpura (within a multiple herb Chinese formula)</td>
<td>D</td>
</tr>
</tbody>
</table>

Pregnancy

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>No estrogenic effects</td>
<td>1a</td>
</tr>
</tbody>
</table>

A randomized placebo-controlled trial on postmenopausal women was conducted in order to evaluate the estrogenic effects of dong quai. It was concluded that dong quai does not produce estrogen-like responses in endometrial thickness or in vaginal maturation and that it was no more helpful than placebo in relieving menopausal symptoms.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uterine stimulant</td>
<td>3</td>
</tr>
<tr>
<td>Uterine relaxant</td>
<td>3</td>
</tr>
</tbody>
</table>

In mice, decoctions of dong quai were found to have a stimulating effect on the uterus in vitro. The stimulating action of dong quai was related to its stimulation of H1 receptors in the uterus. Ferulic acid, a constituent of dong quai, was found to inhibit uterine contraction in rats.
Lactation

Unknown: Evidence level 5

Dong quai was not reported in the evidence-based medicine literature as being safe or contraindicated in lactation.

Contraindications
Warfarin therapy

Caution
Menorrhagia
Metrorrhagia

Constituents
Coumarins: osthol, psoralen, bergapten
Butylidene phthalide
Ligustilide
n-Butylidene-phthalide
Sesquiterpenes
Carvacrol
Dihydrophthalic anhydride
Ferulic acid

Pharmacology
- Dong quai has anti-inflammatory effects where it lowered plasma prostaglandin F2α (PGF2α) and menstrual blood PGF2α in patients with dysmenorrhea.
- Dong quai was found to stimulate the growth of human breast cancer cell lines independently of estrogenic activity.
- The coumarin constituent bergapten is believed to be carcinogenic.
- The coumarin constituent osthol has a stimulant effect on the central nervous system.
- Dong quai appears to potentiate the effect of warfarin and thereby increase prothrombin time.
- Intravenous administration of dong quai decreased serum gastrin levels of inferior vena cava, hepatic and peripheral veins in patients with liver cirrhosis.
- Dong quai has an analgesic and anti-septic effect in abdominal pain.
- Dong quai administered with nifedipine was shown to decrease mean pulmonary arterial pressure and increase cardiac output and PaO₂ in COPD.
- In combination with ginseng and astragalus, dong quai was found to improve many symptoms of coronary artery disease.
- The coumarins psoralen and bergapten are photosensitizing and may cause photodermatitis.
Drugs interactions

Anti-coagulant/anti-platelet drugs

Warfarin

Part used

Root

References

ECHINACEA
Echinacea angustifolia, E. pallida, E. purpurea

Synonyms/common names/related substances
American cone flower, black Sampson, black Susan, Brauneria angustifolia, B. pallida, comb flower, coneflower, echinaceawurzel, hedgehog, igelkopfwurzel, Indian head, Kansas snakeroot, narrow-leaved purple cone flower, pale coneflower, purple cone flower, purpursonnenhutkraut, purpursonnenhutwurzel, racine d’echinacea, red sunflower, rock-up-hat, roter sonnenhut, schmallblaettrige kegelblumenwurzel, schmallblaettriger sonnenhut, scurvy root, snakerooot, sonnenhutwurzel

Indications

<table>
<thead>
<tr>
<th>Indication</th>
<th>Evidence grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper respiratory tract infection – treatment:</td>
<td>A</td>
</tr>
<tr>
<td>Upper respiratory tract infection – prevention:</td>
<td>B2</td>
</tr>
<tr>
<td>Radiation associated leukopenia:</td>
<td>B2</td>
</tr>
<tr>
<td>Cancer survival time:</td>
<td>C</td>
</tr>
</tbody>
</table>

Pregnancy

<table>
<thead>
<tr>
<th>Risk</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimal risk:</td>
<td>1b</td>
</tr>
</tbody>
</table>

A prospective follow-up study on 206 pregnant women, 112 of whom had used echinacea in the first trimester of pregnancy reported that gestational use of echinacea during the first trimester (organogenesis) is not associated with an increased risk for major malformations. The German Commission E compendium, produced by an expert panel on botanical medicine, considers oral echinacea in recommended doses safe for use during pregnancy. Echinacea was not reported in the scientific literature as being contraindicated during pregnancy.

Lactation

<table>
<thead>
<tr>
<th>Risk</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimal risk:</td>
<td>4</td>
</tr>
</tbody>
</table>

The German Commission E compendium, produced by an expert panel on botanical medicine, considers oral echinacea in recommended doses safe for use during lactation. Echinacea was not reported in the scientific literature as being either safe or contraindicated during lactation.

Constituents
Caffeic acid derivatives: echinocoside, cichoric acid, cynarin
Polysaccharides
Glycoproteins
Alkamides

Toxicity
- LD$_{50}$ in mice: >2500 mg/kg16
- LD$_{50}$ of intravenous echinacea juice: 50 mL/kg17

Pharmacology
- The immunostimulatory effects of echinacea have not been attributed to any single compound.18
- Echinacea increases the proliferation of phagocytes in spleen and bone marrow, stimulates monocytes to produce cytokines (interleukin (IL)-1, IL-6, tumor necrosis factor), increases the number of polymorphonuclear leukocytes (PMN), activates macrophages, and promotes the adherence of PMN to endothelial cells.$^{19-22}$
- Echinacea was shown to inhibit hyaluronidase production in vitro and in vivo.19,21,24
- Echinacea has anti-viral, anti-bacterial and anti-fungal properties.$^{15,25-27}$
- Echinacea was shown to inhibit the influenza virus and the herpes simplex virus (I and II).26,27
- Topically, echinacea has anti-inflammatory properties where it inhibits edema.28,29
- Echinacea may interfere with cytochrome P450 (CYP) 3A4 (CYP3A4) enzyme.30

Drug interactions
Immunosuppressant drugs31
Drugs metabolized by the cytochrome P450 (CYP) 3A4 (CYP3A4) enzyme30

Parts used32
Roots, stems, and leaves

References

EPHEDRA

Ephedra vulgaris, E. distachya, E. equisetina, E. shennungiana, E. gerardiana, E. intermedia, E. sinica

Synonyms/common names/related compounds

Cao mahuang, Chinese ephedra, Chinese joint-fir, cao ma-huang, desert herb, *Ephedrae herba, E. sinensis*, herbal ecstasy, Indian jointfir, joint fir, mahuang, ma huang, ma-huang, mahuanggen (ma huang root), Mongolian ephedra, muzei ma huang, Pakistani ephedra, popotillo, sea grape, shuang sui ma huang, teamster's tea, yellow astringent, yellow horse, zhong mahuang

Indications

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypotension during spinal anesthesia for cesarean delivery:*2</td>
<td>A</td>
</tr>
<tr>
<td>Weight loss (with caffeine):3–5</td>
<td>B1</td>
</tr>
<tr>
<td>Allergic rhinitis:*6</td>
<td>B1</td>
</tr>
<tr>
<td>Weight loss:*7,8</td>
<td>B2</td>
</tr>
<tr>
<td>Asthmatic bronchoconstriction:*9,10</td>
<td>B2</td>
</tr>
<tr>
<td>Hypotension (with caffeine):*11</td>
<td>B2</td>
</tr>
<tr>
<td>Sexual arousal in women:*12</td>
<td>B2</td>
</tr>
<tr>
<td>Hypotension during epidural block:*13</td>
<td>C</td>
</tr>
</tbody>
</table>

Pregnancy

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crosses the placenta:*14</td>
<td>1a</td>
</tr>
<tr>
<td>Does not affect fetal wellbeing or neonatal outcome:*14</td>
<td>1a</td>
</tr>
</tbody>
</table>

A randomized controlled trial on 40 pregnant women undergoing elective cesarean reported that ephedrine crosses the placenta where the fetal blood level is approximately 70% of the maternal level.*14* The presence of ephedrine in the fetal circulation did not seem to have any deleterious effects on fetal wellbeing or neonatal outcome.*14*

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increases neonatal heart rate:*15</td>
<td>1a</td>
</tr>
</tbody>
</table>

A study of fetal heart rate changes during epidural anesthesia in 71 patients found that ephedrine administration was associated with significant increases in...
fetal hear rate and beat-to-beat variability. The authors reported that the fetal heart rate changes were dose related and were not associated with fetal asphyxia as judged by measurement of fetal scalp blood pH or APGAR scores. A randomized controlled trial on 40 pregnant women undergoing elective cesarean reported that ephedrine increased fetal heart rate for 40–50 minutes after intramuscular injection to the mother. Ephedrine did not adversely affect the fetus.

A review article on the potential value of plants as sources of anti-fertility agents reported that ephedra is a uterine stimulant and that its constituents ephedrine and pseudoephedrine are uterine stimulants.

Ephedrine

May cause hypertension in the mother:

A systematic review on the dose–response characteristics of prophylactic intravenous ephedrine for the prevention of hypotension during spinal anesthesia for cesarean delivery found that at larger doses of ephedrine, the likelihood of causing hypertension was actually more than that of preventing hypotension and there was also a minor decrease in umbilical arterial pH. As such, the authors did not recommend prophylactic ephedrine. A previous systematic review in 2002 also found similar results.

Increases blood flow to the uterus:

An outcome study in order to assess the effects of ephedrine on uterine artery velocities and resistance index using the Doppler technique during the active phase of labor found that a bolus administration of intravenous ephedrine may increase uterine perfusion pressure during labor and restore uterine blood flow to the placenta during uterine contractions, thereby preventing fetal asphyxia.

Teratogenic – limb defects (with theophylline and phenobarbital):

Two cases were observed of severe limb defects in infants following the use of sympathomimetic drugs during pregnancy. The mother of one infant had taken large doses of Primatene (ephedrine, theophylline, phenobarbital) as tablets and mist throughout pregnancy, where her baby was born with oligoectroxydactyly. The authors also reported that studies in pregnant rabbits using Primatene in both low and high dosage resulted in limb reduction defects and other malformations in a significant number of the offspring compared with controls.
Potential abortifacient (with theophylline and phenobarbital), Evidence level 2

A case was reported of an aborted human embryo from a mother who had taken four tablets of Tedral (130 mg theophylline, 25 mg ephedrine, 8 mg phenobarbital) for an upper respiratory tract infection when the embryo was at approximately 30 days of development.

Avoid in pregnancy-induced hypertension, Evidence level 4

A review study on the influence of epidural analgesia on fetal and neonatal well-being reported that epidural analgesia-containing ephedrine should be avoided in women with pregnancy-induced hypertension.

Uterine stimulant, Evidence level 4

A review article on the potential value of plants as sources of anti-fertility agents reported that ephedrine is a uterine stimulant.

Pseudoephedrine

Causes birth defects (gastrochisis and small intestine atresia [SIA]), Evidence level 1b

A retrospective cohort study was conducted on the relationship between maternal use of cough/cold/analgesic medications containing pseudoephedrine and risks of gastrochisis and SIA. The authors examined the mothers of 206 gastrochisis cases, 126 SIA cases, and 798 controls. The risk of gastrochisis was elevated for use of pseudoephedrine and pseudoephedrine combined with acetaminophen (paracetamol). The risk of SIA was increased for use of pseudoephedrine and for use of pseudoephedrine in combination with acetaminophen.

A case–control study of gastrochisis where they evaluated the risks associated with mother’s first-trimester use of medications found an elevated risk of gastrochisis with maternal use of pseudoephedrine. Another study found the same association between pseudoephedrine use during pregnancy and the increased risk of gastrochisis.

Teratogenic – limb defects (with phenylephrine and phenylpropanolamine), Evidence level 2

Two cases were observed of severe limb defects in infants following the use of sympathomimetic drugs during pregnancy. The mother of one infant had taken Triaminic (pseudoephedrine, phenylephrine, phenylpropanolamine) during pregnancy where her baby was born with distal limb defects.
Uterine stimulant: Evidence level 4

A review article on the potential value of plants as sources of anti-fertility agents reported that pseudoephedrine is a uterine stimulant.16

Lactation

May cross into breast milk: Evidence level 2

A case was reported of a 3-month-old child with irritability, excessive crying, and disturbed sleep patterns for 5 days.26 Further investigation led to the discovery that the mother was taking a long-acting nasal decongestant, containing dexbrompheniramine and d-isoephedrine, for allergic rhinitis.26 Symptoms subsided after the mother discontinued the decongestant.26 The author reported that it was not possible to prove conclusively that ephedrine (d-isoephedrine) crosses into breast milk.26

Pseudoephedrine

Decreases milk production: Evidence level 1a

Unlikely to affect the infant: Evidence level 1a

A randomized crossover study was conducted on eight lactating women to assess the effects of pseudoephedrine on breast blood flow, temperature and milk production, and to estimate the likely infant dose during breast-feeding.27 Pseudoephedrine was found to significantly reduce milk production, where the depression of prolactin secretion may be a contributing factor.27 The authors reported that at the maximum recommended pseudoephedrine doses, the calculated infant dose delivered via milk was <10% of the maternal dose, and is unlikely to affect the infant adversely.27

Contraindications

Pregnancy-induced hypertension22
Enlarged prostate28
Organic heart disease28
Hypertension28
Diabetes28
Anxiety/restlessness28
Closed-angle glaucoma28
Impaired cerebral circulation28
Pheochromocytoma28
Hyperthyroidism24
Caution

Anorexia
Insomnia
Suicidal persons
Concomitant use with caffeine

Constituents
Alkaloids: ephedrine, pseudoephedrine, phenylpropanolamine, norpseudoephedrine, methylephedrine, norephedrine

Toxicity
- Ephedrine is toxic >300 mg per day.28
- Lethal dose: 1–2 g of ephedrine.28
- In dogs, the minimum dose at which death was reported was 5.8 mg/kg (2.6 mg/lb).32

Pharmacology
- Ephedrine decreases direct uterine arterial vasoconstriction during pregnancy by increasing the release of an endogenous vasodilator (nitrous oxide), either from the vascular endothelium or the vessel wall.33
- Ephedrine can stimulate uterine contractions, and theoretically, can be catabolized to mutagenic nitrosamines.34
- The sympathomimetics ephedrine and pseudoephedrine can directly and indirectly stimulate the sympathetic nervous system.35
- Ephedra alkaloids have been linked to myocarditis, myocardial infarction, coronary artery vasoconstriction, cardiac arrhythmia, cerebral hemorrhage, cerebral vasculitis, and ischemic stroke.1,36
- Ephedrine and pseudoephedrine can increase systolic and diastolic blood pressure, heart rate and cardiac contractility, and cause peripheral vasoconstriction, bronchodilation and central nervous system stimulation.30
- Ephedrine causes thermogenesis and modest weight loss, possibly by stimulating norepinephrine release.37
- Ephedrine appears to have anti-tussive, bacteriostatic and anti-inflammatory properties.34,38,39
- Ephedrine may exacerbate urinary retention, but can also have diuretic effects.40
- Ephedrine relaxes the smooth muscle in the gastrointestinal and urinary tract.41
- Ephedrine causes catecholamine release and increases central nervous system stimulation, which may lead to better anaerobic exercise performance.42

Drug interactions
Caffeine
Dexamethasone (Decadron)
Diabetic drugs

Ergotamine

Monoamine oxidase inhibitors

Oxytocin

QT-interval prolonging drugs

Reserpine

Theophylline

Urinary acidifiers

Urinary alkalinizers

Parts used

Stems, twigs; root and fruits (lesser extent)

References

EVENING PRIMROSE
Oenothera biennis

Synonyms/common names/related compounds
EPO, fever plant, huile d’onagre, king’s cureall, night willow-herb, primrose, scabish, sun drop

Indications

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atopic dermatitis and eczema</td>
<td>A</td>
</tr>
<tr>
<td>Diabetic peripheral neuropathy</td>
<td>B1</td>
</tr>
<tr>
<td>Diabetes</td>
<td>B1</td>
</tr>
<tr>
<td>Rheumatoid arthritis</td>
<td>B2</td>
</tr>
<tr>
<td>Breast cysts</td>
<td>B2</td>
</tr>
<tr>
<td>Pregnancy-induced hypertension and preeclampsia</td>
<td>B2</td>
</tr>
<tr>
<td>Raynaud’s phenomenon</td>
<td>B2</td>
</tr>
<tr>
<td>Post-viral fatigue syndrome</td>
<td>B2</td>
</tr>
<tr>
<td>Breast cancer (with tamoxifen)</td>
<td>B2</td>
</tr>
<tr>
<td>Breast pain (mastalgia)</td>
<td>C</td>
</tr>
<tr>
<td>Multiple sclerosis</td>
<td>C</td>
</tr>
<tr>
<td>Pre-menstrual syndrome</td>
<td>E</td>
</tr>
</tbody>
</table>

Pregnancy

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimal risk</td>
<td>1a</td>
</tr>
</tbody>
</table>

A randomized controlled trial was conducted on the effects of evening primrose oil (EPO) supplementation of vasodilatory prostacyclin (PGI2) and vasoconstrictor thromboxane A2 in 18 preeclamptic women between 31 and 26 weeks of gestation. The authors did not report any adverse effects on the women, the pregnancy outcome, and any malformations in the newborns. Another study conducted on prostaglandin pathways in women with preeclampsia did not report any risk in pregnancy associated with EPO. A placebo-controlled, partially double-blinded, clinical trial on the effects of EPO and fish oil in preventing preeclampsia of pregnancy did not report any
adverse effects on the women, the pregnancy outcome, and any malformations in the newborns.
A comparative study on the vascular sensitivity to angiotensin II in the mid-trimester of pregnancy in women after taking EPO did not report any adverse effects on the women, the pregnancy outcome, and any malformations in the newborns. A comparative study on EPO and co-factors for prostaglandin synthesis in 10 pregnant and 10 non-pregnant women did not report any adverse effects on the women, the pregnancy outcome, and any malformations in the newborns.

<table>
<thead>
<tr>
<th>Teratogenic and induces labor:</th>
<th>Evidence level 1a</th>
</tr>
</thead>
<tbody>
<tr>
<td>A review of randomized double-blind studies reported that γ-linolenic acid (GLA) increases prostaglandin E levels. It was recommended that GLA be avoided in pregnancy given the teratogenic and labor-inducing effects of prostaglandin E agonists.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>May induce labor but effectiveness is unclear:</th>
<th>Evidence level 1b</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPO is widely used by many midwives to hasten cervical ripening, to shorten labor and to decrease the incidence of post-date pregnancies. A survey of midwives in the USA found that 60% used EPO to induce labor. A two-group retrospective quasi-experimental design on a sample of women, where selected outcomes in 54 women taking EPO in their pregnancy were compared with outcomes in 54 women who did not showed that the oral administration of EPO from the 37th week of gestation until birth did not shorten gestation or decrease the overall length of labor.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Increased risk of pregnancy complications</th>
<th>Evidence level 1b</th>
</tr>
</thead>
<tbody>
<tr>
<td>(prolonged rupture of membranes, oxytocin and augmentation, arrest of descent, vacuum extraction):</td>
<td></td>
</tr>
<tr>
<td>A two-group retrospective quasi-experimental design reported that orally administered EPO may be associated with an increase in the incidence of prolonged rupture of membranes, oxytocin augmentation, arrest of descent, and vacuum extraction.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lactation</th>
<th>Evidence level 1a</th>
</tr>
</thead>
<tbody>
<tr>
<td>A randomized controlled trial on the total fat and essential fatty acid content of breast milk following EPO and placebo supplementation in 39 women for a period of 8 months starting between the second and sixth months of lactation reported an increase in fatty acids in breast milk, but did not report any adverse effects in the infants or mothers. A study was conducted on whether formulae</td>
<td></td>
</tr>
</tbody>
</table>
Herbal medicines

with EPO and fish oils raise long-chain polyunsaturated fatty acids in plasma cholesterol esters, erythrocytes, and platelets to levels encountered in breast-fed infants. The authors did not report any adverse effects in the infants.

Constituents

2–16% GLA
65–80% linolenic acid
Vitamin E

Pharmacology

- EOP has anti-inflammatory activity where it blocks the transformation of arachidonic acid to leukotrienes, increases the production of 1-series prostaglandins and acts as a competitive inhibitor of 2-series prostaglandins and 4-series leukotrienes.
- EPO may help women with PMS who have lower levels of GLA, possibly due to a defect in the conversion of linoleic acid to GLA.
- EPO may help children with attention-deficit hyperactivity disorder who have lower levels of GLA.
- EPO may lower levels of plasma lipids and inhibit platelet aggregation.
- EPO may improve neuronal blood supply and possibly prevent diabetic neuropathy.
- EPO was found to reverse epidermal hyperproliferation in guinea pigs.

Drug interactions

Anesthesia
Anti-convulsant/anti-seizure drugs
Anti-coagulant/anti-platelet drugs
Phenothiazines

Part used

Seed

References

114 *Herbal medicines*

FALSE UNICORN
Chamaelirium luteum

Synonyms/common names/related substances
Blazing star, fairywand, helonias, starwort

Indications

<table>
<thead>
<tr>
<th>Indication</th>
<th>Evidence grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menstrual complaints:</td>
<td>E</td>
</tr>
<tr>
<td>Diuretic</td>
<td>E</td>
</tr>
</tbody>
</table>

Pregnancy

<table>
<thead>
<tr>
<th>Indication</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Induces labor:</td>
<td>4</td>
</tr>
<tr>
<td>Uterine stimulant:</td>
<td>4</td>
</tr>
<tr>
<td>Emmenagogue</td>
<td>4</td>
</tr>
</tbody>
</table>

False unicorn is part of a combination of herbal medicines that have been traditionally used in the third trimester to prepare a woman for delivery; this preparation is called ‘mother’s cordial’ or ‘partus preparatus’. In addition to false unicorn, mother’s cordial contains: squaw vine (Mitchella ripens), raspberry (Rubus idaeus), blue cohosh (Caulophyllum thalictroides) and black cohosh (Cimicifuga racemosa).

Constituents
No available information
Pharmacology
False unicorn is reported to have anthelmintic, diuretic, uterine stimulant and menstruation stimulant activity.\(^1\),\(^8\)

Drug interactions
None reported

Parts used\(^1\)
Root and rhizome

References
FENNEL

Foeniculum vulgare

Synonyms/common names/related compounds
Bitter fennel, carosella, common fennel, finnochio, Florence fennel, garden fennel, large fennel, phytoestrogen, sweet fennel, wild fennel

Indications

Oil

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infant colic</td>
<td>B1</td>
</tr>
<tr>
<td>Chronic colitis (with Taraxacum officinale, Hypericum perforatum, Calendula officinalis and Melissa officinalis)</td>
<td>C</td>
</tr>
<tr>
<td>Digestive complaints</td>
<td>F</td>
</tr>
</tbody>
</table>

Pregnancy

Oil

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decreases uterine contractions</td>
<td>3</td>
</tr>
</tbody>
</table>

A study on the effects of fennel essential oil on the rat uterus reported that fennel essential oil significantly reduced the intensity of oxytocin and PGE2-induced contractions in the rat uterus and reduced the frequency of contractions induced by PGE2.5

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potential abortifacient</td>
<td>4</td>
</tr>
<tr>
<td>Emmenagogue</td>
<td>4</td>
</tr>
</tbody>
</table>

A review article on the potential value of plants as sources of anti-fertility agents reported that fennel was a potential abortifacient and an emmenagogue.6

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hormonal effects</td>
<td>4</td>
</tr>
</tbody>
</table>

A herbal toxicology and drug interaction compendium reported that fennel may have hormonal effects.7

Seed

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emmenagogue</td>
<td>4</td>
</tr>
</tbody>
</table>
A review article on the potential value of plants as sources of anti-fertility agents reported that fennel seeds are an emmenagogue and have estrogenic activity.6,8

Food amounts

Likely safe:1 Evidence level 4

A natural product database reported that fennel is likely safe when consumed in food amounts.1

Lactation

Avoid:7 Evidence level 4

A toxicology and drug interaction compendium reported that fennel oil should be avoided while breast-feeding.7 There are no reports in the scientific literature of fennel oil being either safe or contraindicated during lactation.

Cautions

- Avoid long term use as estragole is a procarcinogen.9
- Avoid oral use in liver disease or alcoholism, and during use of acetaminophen (paracetamol).7
- Infants or toddlers4,5

Constituents

Seed10,11
- \(\beta\)-Carotene
- Vitamin C
- Calcium
- Magnesium
- Iron

Oil1,7
- Anethole
- Fenchone
- Estragole

Toxicity

Oil
- Oral LD\textsubscript{50}: 1.3 g/kg to 4.5 g/kg5,7,12
Anethole
Oral LD₅₀: 2.09 g/kg

Pharmacology
• Anethole has estrogenic activity and may deplete liver glutathione.⁷,¹⁴
• Anethole and fenchone reduce upper respiratory tract secretions.¹⁴
• Anethole may be insecticidal and toxic.¹
• Aqueous fennel extract might increase mucociliary activity.¹⁴
• Fennel seed can promote gastrointestinal motility, and in higher concentrations, can act as an anti-spasmodic.⁴
• Fennel may be allergenic.¹⁵
• Estragole is a procarcinogen that is not directly hepatotoxic or hepatocarcinogenic as it requires activation by liver enzymes to reach full toxicity.⁹

Drug interactions
Ciprofloxacin (Cipro)¹¹

Parts used¹
Seed, oil

References

FENUGREEK
Trigonella foenum-graecum, T. foenugraecum

Synonyms/common names/related compounds
Alholva, bird's foot, bockshornklee, bockshornsame, foenugraeci semen, foenugreek, Greek clover, Greek hay, Greek hay seed, hu lu ba, methi, trigonella

Indications

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 2 diabetes:</td>
<td>B2</td>
</tr>
<tr>
<td>Type 1 diabetes:</td>
<td>B2</td>
</tr>
<tr>
<td>Hyperlipidemia:</td>
<td>B2</td>
</tr>
</tbody>
</table>

Pregnancy

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudo-maple syrup urine disease:</td>
<td>2</td>
</tr>
<tr>
<td>Potential abortifacient:</td>
<td>3</td>
</tr>
<tr>
<td>Uterine stimulant:</td>
<td>3</td>
</tr>
<tr>
<td>Emmenagogue:</td>
<td>4</td>
</tr>
</tbody>
</table>

There are case reports of neonates being born with a peculiar odor following maternal consumption of fenugreek just before delivery. In one study, the authors reported that the odor should not be confused with maple syrup urine disease and that there were no long-term effects. The odor is believed to originate from the fenugreek constituent sotolone.

Fenugreek extracts, both aqueous and alcoholic, have been shown to have a stimulating effect on the guinea pig uterus, especially during late pregnancy. A review article on the potential value of plants as sources of anti-fertility agents reported that fenugreek is a potential abortifacient, emmenagogue, and uterine stimulant.

Food

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimal risk:</td>
<td>4</td>
</tr>
</tbody>
</table>

Fenugreek is reported to have minimal risk when taken in food amounts during pregnancy.
Lactation

Galactogogue: Evidence level 4

A review article on fenugreek reports that there is anecdotal evidence that it stimulate lactation. A clinical trial compared fenugreek versus torbangun, a plant used traditionally in Indonesia for lactation, and reported that fenugreek is frequently used by women to promote lactation.

Potential oxytocic activity: Evidence level 4

A herbal medicine compendium reported that fenugreek has potential oxytocic activity.

Caution

Do not take with drugs as the mucilage content may decrease or delay drug absorption

Constituents

Trigonelline
4-Hydroxyisoleucine
Fenugreekine

Toxicity

Oral LD₅₀: 10 g/kg
Acute oral LD₅₀: >5 g/kg
Intra-peritoneal LD₅₀: 1.9 g/kg
Acute dermal LD₅₀: >2 g/kg

Pharmacology

- Fenugreek slows glucose absorption in the gastrointestinal tract.
- Fenugreek and its constituent trigonelline have hypoglycemic activity.
- The constituent 4-hydroxyisoleucine may directly stimulate insulin.
- In patients with type 2 diabetes, fenugreek has been shown to increase beta-cell secretion, improve insulin resistance, significantly decrease triglyceride levels and increase high-density lipoproteins.
- Fenugreek seed consumption may decrease calcium oxalate deposition in the kidneys.
- The constituent fenugreekine may have cardiotonic, hypoglycemic, diuretic, anti-inflammatory, anti-hypertensive, and anti-viral properties.

Drug interactions

Diabetic drugs
Corticosteroids
Hormone therapy
Monoamine oxidase inhibitors
Part used

Seeds

References

FEVERFEW
Tanacetum parthenium

Synonyms/common names/related compounds
Altamisa, bachelor’s buttons, featerfoiul, featherfoil, fever few, flirtwort midsummer daisy, santa maria, Tanaceti parthenii

Indications

| Migraine headaches:2,3 | Evidence grade A |

Pregnancy

| Emmenagogue:4 | Evidence level 4 |
| Safety unknown: | Evidence level 5 |

A herbal medicine compendium reported that feverfew is an emmenagogue.4 There are no reports in the scientific literature of feverfew being either safe or contraindicated during pregnancy.

Lactation

| Safety unknown: | Evidence level 5 |

There are no reports in the scientific literature of feverfew being either safe or contraindicated during lactation.

Constituents

- Sesquiterpene lactone:5 parthenolide
- Flavonoid glycoside:6,7 tanetin, apigenin, luteolin 7-glucuronides, quercetagetin, 6-hydroxykaempferol
- Oil:8 chrysanthenyl acetate
- Monoterpenes5
- Tannins5
- Melatonin9

Toxicity

- A LD50 value has not been estimated for feverfew.4
- Detailed blood analysis of 60 feverfew users (some >1 year) did not show any significant differences when compared with that of controls.10
- Rats and guinea pigs fed feverfew (>100 times the human daily dose for 5 weeks, and >150 times the human daily dose for 7 weeks, respectively) were identical to control animals, especially with regard to appetite and weight gain, and no adverse effects were reported.11
• Parthenolide at concentrations up to 800 mmol was found to be non-mutagenic.12
• Sesquiterpene lactones that contain an α-methylene butyrolactone ring are known to cause allergic reaction.13,14 Compounds with this structure are present in feverfew and reports of contact dermatitis have been documented.15–18

Pharmacology
• The constituent parthenolide was widely believed to be the active constituent in feverfew.19,20 It is now believed that other constituents are necessary in the prevention and treatment of migraines.8,20–22
• Feverfew may inhibit platelet aggregation and inhibit serotonin release from platelets and leukocytes.20,23–27
• Feverfew appears to block prostaglandin synthesis by inhibiting phospholipase, thereby preventing the release of arachidonic acid.25,28,29
• Feverfew may inhibit inflammation and pain transmission, and have an analgesic effect.6,30–32
• Feverfew leaves and parthenolide may cause irreversible inhibition of vascular muscle contraction.33,34
• The melatonin in feverfew may contribute to its pharmacological effect where migraines have been associated with decreased melatonin secretion.9,35 Fresh or dried leaves contain significantly more melatonin than commercially prepared standardized feverfew tablets.9
• Feverfew has a cytostatic effect on tumor cell growth.36

Drug interactions1
\begin{itemize}
 \item Anti-coagulant/anti-platelet drugs20,23–27,37
 \item Nonsteroidal anti-inflammatory drugs38,39
\end{itemize}

Part used
Leaf1

References
126 Herbal medicines

FLAX
Linum usitatissimum

Synonyms/common names/related compounds
Flax seed, graine de lin, leinsamen, lini semen, linseed, lint bells, linum, phytoestrogen, winterlien

Indications

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyperlipidemia</td>
<td>B1</td>
</tr>
<tr>
<td>Breast cancer prevention</td>
<td>B1</td>
</tr>
<tr>
<td>Constipation</td>
<td>B2</td>
</tr>
<tr>
<td>Menopausal symptoms</td>
<td>B2</td>
</tr>
<tr>
<td>Diabetes</td>
<td>B2</td>
</tr>
<tr>
<td>Hypertension</td>
<td>B2</td>
</tr>
<tr>
<td>Coronary artery disease/atherosclerosis</td>
<td>C</td>
</tr>
<tr>
<td>Cyclic mastalgia</td>
<td>C</td>
</tr>
<tr>
<td>Lupus nephritis</td>
<td>C</td>
</tr>
<tr>
<td>HIV/AIDS (with arginine and yeast RNA)</td>
<td>C</td>
</tr>
<tr>
<td>Prostate cancer</td>
<td>D</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyperlipidemia</td>
<td>B1</td>
</tr>
<tr>
<td>Hypertension</td>
<td>B2</td>
</tr>
<tr>
<td>Coronary artery disease/atherosclerosis</td>
<td>C</td>
</tr>
<tr>
<td>Diabetes</td>
<td>C</td>
</tr>
</tbody>
</table>

04 Chapter 1410 10/25/05 2:15 PM Page 128
Pregnancy

Flaxseed

<table>
<thead>
<tr>
<th>Effect</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estrogenic/anti-estrogenic</td>
<td>3</td>
</tr>
<tr>
<td>lowers birthweight</td>
<td>3</td>
</tr>
</tbody>
</table>

Flaxseeds consumed during pregnancy were shown to have estrogenic and anti-estrogenic effects on newborn rats. Flaxseed had no effect on pregnancy outcome except that a 10% flaxseed diet lowered birthweight. A review article on the potential value of plants as sources of anti-fertility agents reported that flax has estrogenic activity.

Conflicting evidence

<table>
<thead>
<tr>
<th>Effect</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Does not affect fetal development</td>
<td>3</td>
</tr>
<tr>
<td>Does affect fetal development</td>
<td>3</td>
</tr>
<tr>
<td>May alter reproduction</td>
<td>3</td>
</tr>
<tr>
<td>May affect estrous cycle</td>
<td>3</td>
</tr>
</tbody>
</table>

Female rat offspring from mothers fed flaxseed during pregnancy had shortened anogenital distance, greater uterine and ovarian relative weights, earlier age and lighter body weight at puberty, lengthened estrous cycle and persistent estrus. The male rat offspring from mothers fed flaxseed during pregnancy had reduced postnatal weight gain and had greater sex gland and prostate relative weights. Another study reported that flaxseed can potentially alter reproduction, depending on the dose and timing of exposure. Another study, however, reported that flaxseed ingestion during pregnancy did not affect fetal development but did affect indices of postnatal development such as the estrous cycle.

<table>
<thead>
<tr>
<th>Effect</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increases essential fatty acids in offspring</td>
<td>3</td>
</tr>
</tbody>
</table>

Flaxseed increased \(\alpha \)-linolenic acid (ALA) and eicosapentaenoic acid (EPA) and decreased arachidonic acid in serum and tissues of rat dams and offspring.

<table>
<thead>
<tr>
<th>Effect</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not embryotoxic</td>
<td>3</td>
</tr>
</tbody>
</table>

A study of the effect of flaxseed on rat embryos concluded that diets high in flaxseed or flaxseed meal do not result in serum factors that are directly embryotoxic to organogenesis-staged rat embryos.

<table>
<thead>
<tr>
<th>Effect</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strengthens bones prior to adulthood</td>
<td>3</td>
</tr>
</tbody>
</table>
Female rat bone is more sensitive to the estrogen-like action of flaxseed lignans during early life when endogenous levels of sex hormones are low. By adulthood, however, the improved bone strength does not persist. Exposure to purified lignan does not have negative effects on bone strength.

<table>
<thead>
<tr>
<th>Effect</th>
<th>Evidence Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Does not affect spermatogenesis or testis development</td>
<td>3</td>
</tr>
</tbody>
</table>

Quantitative information was collected on male reproductive effects in the rat of maternal and postnatal dietary exposure to flaxseed. It was reported that exposure to flaxseed does not adversely affect testis structure or spermatogenesis. A similar study also found that spermatogenesis was unaffected by flaxseed consumption.

<table>
<thead>
<tr>
<th>Effect</th>
<th>Evidence Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potential abortifacient</td>
<td>4</td>
</tr>
<tr>
<td>Emmenagogue</td>
<td>4</td>
</tr>
</tbody>
</table>

A review article on the potential value of plants as sources of anti-fertility agents reported that flax was a potential abortifacient and an emmenagogue.

Oil

<table>
<thead>
<tr>
<th>Effect</th>
<th>Evidence Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unknown</td>
<td>5</td>
</tr>
</tbody>
</table>

There are no reports in the scientific literature of flax oil being either safe or contraindicated during pregnancy.

Food amounts

<table>
<thead>
<tr>
<th>Effect</th>
<th>Evidence Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimal risk</td>
<td>4</td>
</tr>
</tbody>
</table>

A natural product compendium reported that flaxseed and flax oil pose minimal risk during pregnancy if taken in food amounts.

Lactation

Flaxseed

<table>
<thead>
<tr>
<th>Effect</th>
<th>Evidence Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimal risk</td>
<td>3</td>
</tr>
</tbody>
</table>

A study on the effect of flaxseed supplementation during pregnancy and lactation reported that there were no significant effects of exposing male or female offspring to flaxseed during lactation. They reported that their findings are in contrast to the estrogenic effects observed in male and female offspring exposed to flaxseed during fetal life and suggest that fetal life is a more hormone-sensitive period of development. Although maternal feeding of flaxseed
during lactation appears to be safe with respect to reproductive indices among offspring, the authors reported that future investigation is required to elucidate whether there are any long-term implications with respect to fertility.31

Flaxseeds consumed during pregnancy have estrogenic and anti-estrogenic effects on newborn rats.24 As such, flaxseed was not recommended during lactation as its hormonal effect may have an impact on the developing infant.24

Through radioactive labeling, a study reported that flax lignans were transferred to the offspring via rat dam’s milk.24 Another study found that nervonic acid, found in flaxseed, is not readily transferred across the placental barrier but does readily cross the mammary epithelium and is incorporated into milk.34

Flaxseed in the diet of lactating cows increased the beneficial fatty acids in milk without depressing nutrient digestibility.35 Flaxseed fed to cows increased milk protein percentage and its n-6 to n-3 fatty acids ratio.36

Exposing male rats to a diet containing flaxseed either during lactation or through to early adulthood is safe with respect to bone health, as measured by bone mass and strength.37

There are no reports in the scientific literature of flax oil being either safe or contraindicated during lactation.

A natural product compendium reported that flaxseed and flax oil pose minimal risk during lactation if taken in food amounts.3

Contraindications

Intestinal obstruction38
Esophageal or gastrointestinal stricture38
Acute gastroenteritis38
Esophagitis38
Caution

Large quantities of flaxseed can lead to intestinal obstruction if not taken with sufficient fluid.38

Constituents

\textit{Seed}39,40

- ALA
- Cyanogenic glycosides (linamarin, linustatin, neolinustatin)
- Lignan (secoisolariciresinol diglycoside)
- Glutamic acid derivative (linatine)
- Unsaturated fatty acids (linolenic acid, linoleic acid, oleic acid)
- Soluble fiber mucilage (D-xylose, L-galactose, L-rhamnose, D-galacturonic acid)
- Monoglycerides
- Triglycerides
- Sterols
- Phenylpropane derivatives

\textit{Oil}39

- ALA
- Unsaturated fatty acids (linolenic acid, linoleic acid, oleic acid)

Toxicity

\textit{LD}_{50} \text{ of linatine: 2 mg (intraperitoneal)}38

Pharmacology

\textit{Flaxseed}

- Flaxseed is a bulk-forming fiber that stimulates intestinal peristalsis, thereby producing a laxative effect.41
- Flaxseed supplementation significantly increases n-3 polyunsaturated fatty acids in plasma and erythrocytes.13,42
- Since flaxseed reduces platelet aggregation and serum cholesterol, flaxseed thereby reduces the risk of atherosclerosis.43-47
- Flaxseed may have hypoglycemic activity and lower insulin levels in post-menopausal women.12,13
- Flaxseed is an abundant indirect food source of lignans, where lignans may have estrogenic and anti-estrogenic effects.48,49
- The lignans in flaxseed inhibit the growth of hormone-dependent breast cancer cells, inhibit mammary tumor growth in vitro, decrease cellular proliferation in mammary glands, increase mammary gland differentiation and reduce endogenous estrogen binding to estrogen receptors in breast cancer cells.40,48,50-59
ALA was shown to reduce the growth of established tumors and have an anti-inflammatory effect.45,60 The enzyme linamarase releases cyanide from linamarin, but linamarase is deactivated in normal gastric acid.38 Grinding the seeds into a fine powder makes the cyanogenic glycosides more liable to hydrolysis and enhances the absorption of cyanide.38

Oil
- Flaxseed oil is among the best sources of ALA.43
- ALA raises serum n-3 polyunsaturated fatty acids, including EPA and docosahexaenoic acid (DHA).42,61
- Flaxseed oil may lower triglyceride levels, increase systemic arterial elasticity and protect against ischemic stroke and lacunar infarction.62–64
- Flaxseed oil may decrease platelet aggregation.45,61

Drug interactions1
- Anti-coagulant/anti-platelet drugs65
- Anti-diabetic drugs12,13
- Oral drugs66

Parts used1
- Seed and oil

References
Herbal medicines

30. Ward WE, Chen J, Thompson LU. Exposure to flaxseed or its purified lignan during suckling only or continuously does not alter reproductive indices in male and female offspring. J Toxicol Environ Health A 2001; 64:567–577.

FOXGLOVE
Digitalis lanata, D. purpurea

Synonyms/common names/related substances
Dead man’s bells, fairy cap, fairy finger, foxglove, lady’s thimble, lion’s mouth, purple foxglove, Scotch mercury, throatwort, witch’s bells, wolly foxglove

Indications

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Congestive heart failure</td>
<td>A</td>
</tr>
</tbody>
</table>

Pregnancy

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Musculoskeletal malformations</td>
<td>1b</td>
</tr>
</tbody>
</table>

A serial examination of 20,248 livebirths, stillbirths and abortions to assess correlations between drug exposure and major malformations found a statistically significant association between digitalis and anomalies of the musculoskeletal system.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment of hydrops fetalis</td>
<td>2</td>
</tr>
<tr>
<td>Treatment of fetal cardiac disorders</td>
<td>2</td>
</tr>
</tbody>
</table>

There are a few cases in the scientific literature of digitalis being used to treat hydrops fetalis. The treatment outcomes were successful in some cases and unsuccessful in others.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Can be prescribed during pregnancy</td>
<td>4</td>
</tr>
</tbody>
</table>

Two review articles report that digitalis drug preparations can be prescribed during pregnancy.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cytotoxic</td>
<td>4</td>
</tr>
</tbody>
</table>

A review article on the potential value of plants as sources of anti-fertility agents reported that foxglove has cytotoxic activity.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsafe</td>
<td>4</td>
</tr>
</tbody>
</table>

A botanical safety compendium reports that digitalis is unsafe during pregnancy.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crosses the placenta</td>
<td>4</td>
</tr>
</tbody>
</table>
A review article in the scientific literature reported that digoxin rapidly crosses the placenta and reaches equilibrium with maternal and fetal serum having equal concentrations.15

\textbf{Lactation}

\begin{tabular}{|c|c|}
\hline
\textbf{Unsafe:}14 & \textbf{Evidence level 4} \\
\hline
\end{tabular}

A botanical safety compendium reports that digitalis is unsafe during lactation.14 There are no reports in the scientific literature of digitalis being either safe or contraindicated during lactation.

\textbf{Contraindications}

Second- or third-degree atrioventricular blocks16
Hypercalcemia16
Hypertrophic cardiomyopathy16
Carotid sinus syndrome16
Ventricular tachycardia16
Thoracic aortic aneurysm16
Wolff–Parkinson–White syndrome16

\textbf{Toxicity}

- Toxic dose: 520 mg of powder16
- Lethal dose: 2 g of powder16

\textbf{Constituents}

- Cardiac (steroidal) glycosides:16 digitoxin (glycoside A), gitoxin (glycoside B), gitaloxin, digitonin (\textit{D. purpurea}), digoxin, digitalin, gitaloxin, lanatosides A, B, C, D and E (\textit{D. lanata})
- Cardelonides16

\textbf{Pharmacology}

- Cardiac glycosides in digitalis increase cardiac contractility, decrease heart rate and reduce atrioventricular node conduction.17
- Digitalis increases cardiac output.17
- Digitalis relieves pulmonary congestion and peripheral edema.17

\textbf{Drug interactions}

Digoxin (Lanoxin)18
Potassium-depleting diuretics, quinine18,19
Stimulant laxatives18,19
Tetracyclines and macrolide antibiotics (erythromycin-like drugs)20

\textbf{Parts used}

Leaves, seeds, flowers16
References

GARLIC
Allium sativum

Synonyms/common names/related substances
Aged garlic extract, ail, ajo, allii aativi bulbus, allium, camphor of the poor, clove garlic, garlic clove, nectar of the gods, poor man’s treacle, rust treacle, stinking rose

Indications

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypercholesterolemia (mild effect):1–14</td>
<td>A</td>
</tr>
<tr>
<td>Mild hypertension:1,12,13,15–17</td>
<td>A</td>
</tr>
<tr>
<td>Cancer prevention – stomach and colorectal:18–21</td>
<td>A</td>
</tr>
<tr>
<td>Hypertriglyceridemia:7–9,11,13</td>
<td>B1</td>
</tr>
<tr>
<td>Atherosclerosis:1,16,22–24</td>
<td>B1</td>
</tr>
<tr>
<td>Anti-platelet aggregation:16,23,25</td>
<td>B1</td>
</tr>
<tr>
<td>Unstable angina pectoris:26</td>
<td>B2</td>
</tr>
<tr>
<td>Coronary artery disease:11,22</td>
<td>B2</td>
</tr>
<tr>
<td>Diabetes:16,27</td>
<td>B2</td>
</tr>
<tr>
<td>Tick repellant:28</td>
<td>B2</td>
</tr>
<tr>
<td>Upper respiratory tract infection:29</td>
<td>B2</td>
</tr>
<tr>
<td>Acute otitis media (with Verbascum thapsus, Calendula flores, and Hypericum perforatum):30</td>
<td>B2</td>
</tr>
<tr>
<td>Cancer prevention – thyroid, breast, endometrial:31–33</td>
<td>C</td>
</tr>
<tr>
<td>Rheumatoid arthritis:34</td>
<td>C</td>
</tr>
<tr>
<td>Anti-fungal:35–40</td>
<td>C</td>
</tr>
<tr>
<td>Cryptococcal meningitis:41</td>
<td>D</td>
</tr>
<tr>
<td>Cancer treatment:42,43</td>
<td>E</td>
</tr>
</tbody>
</table>
A systematic review of garlic powder in the treatment of moderate hyperlipidemia concluded that garlic powder preparations significantly lowered serum triglyceride and total cholesterol compared with placebo. A meta-analysis, however, concluded that garlic reduced total cholesterol by 0.65 mmol/L and was less effective in reducing total cholesterol than suggested by previous meta-analyses.

Aged garlic extract

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypercholesterolemia</td>
<td>B1</td>
</tr>
<tr>
<td>Hypertension</td>
<td>B1</td>
</tr>
</tbody>
</table>

Pregnancy

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimal risk – third trimester</td>
<td>1a</td>
</tr>
</tbody>
</table>

A randomized controlled study was conducted where 100 primigravidas were treated with either garlic tablets (800 mg/day) or placebo during the third trimester of pregnancy to determine the effect of garlic supplementation on preeclampsia. With the exception of a garlic body odor, few side effects (e.g. feeling of nausea) were reported as a result of garlic supplementation during the third trimester of pregnancy. Pregnancy outcomes were comparable in both the group treated with garlic and the placebo group. The authors did not report any incidence of major or minor malformations in the newborn infants nor any spontaneous abortions of the fetus.

Garlic crosses into the amniotic fluid

<table>
<thead>
<tr>
<th>Evidence Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
</tr>
</tbody>
</table>

Amniotic fluid samples were obtained from 10 pregnant women undergoing routine amniocentesis procedure, where five of the women ingested placebo capsules while the remaining five ingested capsules containing the essential oil of garlic. The odor of the amniotic fluid obtained from four of the five women who had ingested the garlic capsules was judged to be stronger or more like garlic than the samples collected from the women consuming placebo capsules. Thus, it was concluded that garlic ingestion by pregnant women significantly altered the odor of their amniotic fluid.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potential abortifacient</td>
<td>4</td>
</tr>
<tr>
<td>Emmenagogue</td>
<td>4</td>
</tr>
<tr>
<td>Uterine stimulant</td>
<td>4</td>
</tr>
</tbody>
</table>
A review article on the potential value of plants as sources of anti-fertility agents reported that garlic was a potential abortifacient, emmenagogue and uterine stimulant.

Lactation

<table>
<thead>
<tr>
<th>Minimal risk:</th>
<th>Evidence level 1</th>
</tr>
</thead>
</table>

In nursing infants, maternal garlic ingestion did not significantly affect the number of times the infants fed nor the amount of milk they consumed. Although benign, short-term behavioral changes were observed in the infants as nursing mothers went from placebo to garlic supplementation and vice versa. The authors did not report any adverse effects in the nursing infants nor in breast milk production by the mothers.

** Constituents **

- Sulfur-containing compounds: alliin, allicin (diallyl thiosulfinate), allyl propyl disulfide, diallyl disulfide, diallyl trisulfide, ajoene, vinylthiin
- S-allymercaptocysteine
- S-methylmercaptocysteine
- Volatile oils

Pharmacology

- Garlic has lipid-lowering effects through inhibition of the cholesterologenic enzymes 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase and acetyl-CoA synthetase, through increased loss of bile salts in feces, and through mobilization of tissue lipids into circulation.
- Garlic has anti-atherogenic action in vitro and in vivo where it inhibited the proliferative activity of atherosclerotic plaques in the human aorta, reduced cholesterol accumulation in blood serum, and made low-density lipoprotein significantly more resistant to oxidation than that isolated from subjects receiving no garlic supplements.
- Garlic inhibits platelet aggregation in healthy individuals and patients with cardiovascular disease, and inhibits platelet adhesion to collagen, fibrinogen, and von Willebrand factor.
- Garlic increased fibrinolytic activity during long-term use in chronic infarction as well as during the critical acute post-infarction period.
- Garlic has anti-platelet activity.
- Garlic was found to reduce arterial blood pressure by causing membrane hyperpolarization and subsequent vasodilation through its action on potassium (calcium) ion channels in the membrane of vascular smooth muscle cells.
- Garlic oil reduced blood sugar levels in men and increased blood sugar levels in women.
- Garlic detoxifies chemical carcinogens, prevents carcinogenesis, and directly inhibits the growth of cancer cells.
Garlic stimulates the immune system by stimulating macrophage activity, natural killer cells, and lymphokine-activated killer cells, and by increasing the production of interleukin-2, tumor necrosis factor and interferon-\(\gamma\).\(^{42}\)

Garlic protects against the suppression of immunity by chemotherapy and ultraviolet radiation through the stimulation of macrophages and lymphocytes.\(^{42}\)

Garlic oil was found to reduce the activity of cytochrome P450 CYP2E1.\(^{63}\)

Garlic was shown to significantly increase maximum oxygen consumption (\(\text{VO}_2\) max) and endurance performance time of endurance athletes.\(^{64}\)

Garlic, with \(V.\) thapsus, \(C.\) flores, and \(H.\) perforatum, was an effective anesthetic during acute otitis media ear pain.\(^{31}\)

Garlic has in vitro activity against \(H.\) pylori.\(^{44,45}\)

Garlic has anti-mycotic, anti-fungal and anti-bacterial activity.\(^{35–40,65}\)

Drug interactions

- Anti-coagulant/anti-platelet drugs\(^{22,61}\)
- Anti-glycemic drugs\(^{16,27}\)
- Highly active anti-retroviral therapy (HAART) drugs\(^{66}\)
- Oral contraceptives\(^{1,66}\)
- Drugs metabolized by cytochrome P450 CYP2E1 enzyme\(^{63}\)

Part used\(^{67}\)

Bulb

References

Herbal medicines

146 Herbal medicines

GENTIAN

Gentiana lutea

Synonyms/common names/related compounds
Bitter root, bitterwort, gall weed, gentiana, Gentianae radix, pale gentian, stemless gentian, yellow gentian, wild gentian

Indications

<table>
<thead>
<tr>
<th>Indication</th>
<th>Evidence Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chronic and acute sinusitis (with elderberry, vervain, primrose and sorrel)</td>
<td>B1</td>
</tr>
<tr>
<td>Digestive disorders, appetite disorders and constipation (with rhubarb, boldus and cascara)</td>
<td>B1</td>
</tr>
</tbody>
</table>

Pregnancy

<table>
<thead>
<tr>
<th>Potential Mutagen</th>
<th>Evidence Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gentian constituents gentisin and isogentisin were reported to have mutagenic effects on bacteria.</td>
<td>3</td>
</tr>
</tbody>
</table>

Emmenagogue

<table>
<thead>
<tr>
<th>Evidence Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

A herbal compendium reported that gentian is an emmenagogue. There are no reports in the scientific literature of gentian being either safe or contraindicated during pregnancy.

Lactation

<table>
<thead>
<tr>
<th>Potential Mutagen</th>
<th>Evidence Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gentian constituents gentisin and isogentisin were reported to have mutagenic effects on bacteria.</td>
<td>3</td>
</tr>
</tbody>
</table>

Unknown

<table>
<thead>
<tr>
<th>Evidence Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
</tr>
</tbody>
</table>

There are no reports in the scientific literature of gentian being either safe or contraindicated during lactation.

Contraindications

- Acute gastrointestinal inflammation or irritation
- Peptic ulcer
Constituents

- Iridoid monoterpenes: amarogentin, gentiopicrin, swertiamarin, sweroside
- Hydroxyxanthones: gentisin, isogentisin

Toxicity

100 g of gentian root was reported to yield approximately 100 mg of total mutagenic compounds, of which gentisin and isogentisin comprised 76%.

Pharmacology

- The bitter constituents, gentiamarin, gentiopicrin, amarogentin and swertiamarin, appear to increase saliva and digestive secretion.
- Gentianine may have anti-inflammatory activity.
- Gentisin and isogentisin have been shown to be mutagenic in bacterial studies.
- Gentiopicrin is lethal to mosquito larvae.

Drug interactions

- Antacids
- H2 antagonists
- Proton pump inhibitors

Part used

Root

References

GINGER
Zingiber officinalis

Synonyms/common names/related compounds
African ginger, black ginger, cochin ginger, gingembre, ginger root, imber, Jamaica ginger, jiang, race ginger, shoga, Zingiberis rhizome

Indications

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nausea and vomiting</td>
<td>A</td>
</tr>
<tr>
<td>Hyperemesis gravidarum – nausea and vomiting of pregnancy</td>
<td>B1</td>
</tr>
<tr>
<td>Hyperemesis gravidarum – nausea and vomiting of pregnancy (with vitamin B6)</td>
<td>B1</td>
</tr>
<tr>
<td>Postoperative nausea and vomiting</td>
<td>B1</td>
</tr>
<tr>
<td>Chemotherapy-induced nausea</td>
<td>B2</td>
</tr>
<tr>
<td>Vomiting from motion sickness</td>
<td>B2</td>
</tr>
<tr>
<td>Rheumatoid arthritis</td>
<td>D</td>
</tr>
</tbody>
</table>

Pregnancy

Minimal risk (up to 1500 mg of dried ginger per day): Evidence level 1a

A randomized controlled trial was conducted on 120 women (<20 weeks pregnant) with symptoms of morning sickness. Patients received a ginger extract, equivalent to 1500 mg of dried ginger, for 4 days. After 4 days, there were significant improvements in nausea and retching. Post-delivery follow-up revealed birthweights, gestational age, and APGAR scores to be within the normal ranges. The frequency of congenital abnormalities in the ginger group infants was comparable to that in the general population of infants born at the time of this study.

Another randomized controlled trial was conducted on 70 pregnant women where they received 1000 mg of dried ginger per day. Nausea and vomiting decreased significantly and no adverse effects on pregnancy or pregnancy outcomes were reported. Similar results were found in two other studies where pregnant women took 1000 mg per day.

Another randomized controlled trial was conducted on 138 pregnant women (<16 weeks pregnant) where one group received 500 mg of ginger and the other received 10 mg of vitamin B6. In both groups, symptoms of nausea and vomit-
ing were improved, and no adverse effects during pregnancy and after delivery were reported. A similar study was conducted on ginger and vitamin B6 with 291 pregnant women and reported the same results.\(^8\)

Unlikely cause of spontaneous abortion:\(^6\) Evidence level 1a

During a randomized double-blind crossover trial, one woman in the study experienced a spontaneous abortion in her twelfth week of pregnancy.\(^6\) The authors reported that one spontaneous abortion in 27 pregnancies was not a suspiciously high rate of fetal wastage in early pregnancy.\(^6\)

Does not increase rates of major malformations:\(^7\) Evidence level 1b

A prospective cohort study with matched controls was conducted on 187 pregnancies where the pregnant women had taken ginger during their pregnancy.\(^7\) The researchers concluded that ginger does not increase the rates of major malformations above the baseline rate of 1–3%.\(^7\)

Non-mutagenic, non-teratogenic:\(^19\) Evidence level 3

Mutagenic constituents:\(^20,21\) Evidence level 3

Anti-mutagenic constituents:\(^22\) Evidence level 3

Ginger extracts when administered to pregnant rats during the period of organogenesis, caused neither maternal nor developmental toxicity at daily doses of up to 1000 mg/kg body weight.\(^19\) The constituents 6-gingerol and shogaol have been shown to be mutagenic in bacterial cultures while zingerone has been shown to be anti-mutagenic and offset the mutagenic effects of 6-gingerol and shogaol.\(^20–22\)

Potential embryotoxicity:\(^23\) Evidence level 3

A study on rats reported that in utero exposure to ginger tea resulted in increased early embryo loss and in increased growth in surviving fetuses.\(^23\) Embryonic loss in the ginger tea treatment groups was double that of the controls.\(^23\)

Non-teratogenic:\(^24\) Evidence level 4

A review article on the treatments for nausea during pregnancy reported that the existing treatments, including ginger, showed no evidence of teratogenicity.\(^24\)

Potential testosterone receptor blocker:\(^25\) Evidence level 4

Via inhibition of thromboxane synthetase, it has been proposed that ginger may affect testosterone receptor binding in the fetus, thereby potentially affecting sex steroid differentiation of the fetal brain.\(^25\)
A literature survey of 300 non-medical sources reported that 16 sources report ginger as unsafe during pregnancy. A review article on the potential value of plants as sources of anti-fertility agents reported that ginger is a potential abortifacient. A botanical safety compendium reported that consuming more than 1000 mg of ginger per day during pregnancy was not advised due to potential emmenagogue, mutagenic, and anti-platelet effects.

Lactation

<table>
<thead>
<tr>
<th>Mutagenic constituents:</th>
<th>Evidence level 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-mutagenic constituents:</td>
<td>Evidence level 3</td>
</tr>
</tbody>
</table>

The constituents 6-gingerol and shogaol have been shown to be mutagenic while zingerone has been shown to be anti-mutagenic and offset the mutagenic effects of 6-gingerol and shogaol.

| Unknown: | Evidence level 5 |

There are no reports in the scientific literature of ginger being either safe or contraindicated during lactation.

Caution

Gallstones
Gastric ulcers

** Constituents**

- Non-volatile constituents: 6-gingerol, (6)-shogaol, (6)- and (10)-dehydrogingerdione, (6)- and (10)-gingerdione, zingerone
- Oleoresins
- Proteolytic enzyme: zingibain (a)
Toxicity
- LD$_{50}$ (intraperitoneal): 500 mg/kg31
- No evidence of teratogenicity or mutagenicity at daily doses of up to 1000 mg/kg body weight in rats19

Pharmacology
- The constituent 6-gingerol is believed to be responsible for ginger’s anti-emetic activity.32
- Most of ginger’s anti-emetic activity is localized to the gastrointestinal tract.32
- The constituent galanolactone acts primarily on 5-HT3 receptors in the ileum, which are the same receptors affected by some prescription anti-emetics.32
- Ginger’s anti-emetic activity may also involve the central nervous system, where the constituents 6-shogaol and galanolactone act on serotonin receptors.32
- Ginger does not affect gastrointestinal emptying time.33,34
- Ginger may inhibit cyclooxygenase and lipoxygenase pathways, thereby having anti-inflammatory activity.18
- Ginger may inhibit platelet thromboxane, thereby having anti-platelet activity.35
- The constituents 6-gingerol and shogaol have been shown to be mutagenic in bacterial cultures whereas zingerone has been shown to be anti-mutagenic and to offset the mutagenic effects of 6-gingerol and shogaol.$^{20-22}$
- A study on rats reported that in utero exposure to ginger tea resulted in increased early embryo loss and in increased growth in surviving fetuses.23
- Ginger may have hypoglycemic, hypotensive or hypertensive, hypocholesterolemic, anthelmintic, and gastroprotective effects.36
- Via inhibition of thromboxane synthetase, it has been proposed that ginger may affect testosterone receptor binding in the fetus, thereby potentially affecting sex steroid differentiation of the fetal brain.25

Drug interactions1
Acid-inhibiting drugs37
Anticoagulant/antiplatelet drugs38,39
Barbiturates40
Blood pressure therapy38
Cardiac drugs38,41
Diabetic drugs38,41

Parts used1
Rhizome and root

References
154 Herbal medicines

GINKGO
Ginkgo biloba

Synonyms/common names/related substances
Adiantifolia, bai guo ye, fossil tree, Ginkgo folium, ginkgo leaf, ginkyo, Japanese silver apricot, kew tree, maidenhair tree, salisburia, Salisburia adiantifolia, yinhsing, baiguo

Indications

Leaf

<table>
<thead>
<tr>
<th>Indication</th>
<th>Evidence grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intermittent claudication – peripheral vascular disease:²⁻⁴</td>
<td>A</td>
</tr>
<tr>
<td>Dementia (Alzheimer disease and other):⁵⁻⁷</td>
<td>A</td>
</tr>
<tr>
<td>Cerebrovascular insufficiency:⁸⁻¹⁰</td>
<td>A</td>
</tr>
<tr>
<td>Tinnitus:¹¹,¹²</td>
<td>A</td>
</tr>
<tr>
<td>Age-associated memory impairment:¹³⁻¹⁵</td>
<td>B1</td>
</tr>
<tr>
<td>Memory enhancement in healthy individuals:¹⁶⁻¹⁸</td>
<td>B1</td>
</tr>
<tr>
<td>Altitude sickness:¹⁹</td>
<td>B1</td>
</tr>
<tr>
<td>Vertigo:⁹</td>
<td>B1</td>
</tr>
<tr>
<td>Premenstrual syndrome:²⁰</td>
<td>B1</td>
</tr>
<tr>
<td>Macular degeneration:²¹</td>
<td>B2</td>
</tr>
<tr>
<td>Erectile dysfunction:²²⁻²⁵</td>
<td>C</td>
</tr>
<tr>
<td>Antidepressant-induced sexual dysfunction:²⁶</td>
<td>C</td>
</tr>
<tr>
<td>Chemotherapy adjunct:²⁷,²⁸</td>
<td>C</td>
</tr>
<tr>
<td>Multiple sclerosis:²⁹</td>
<td>D</td>
</tr>
<tr>
<td>Light-induced retinal damage:³⁰</td>
<td>E</td>
</tr>
</tbody>
</table>

Seed

<table>
<thead>
<tr>
<th>Indication</th>
<th>Evidence grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cough, expectorant, asthma, bronchitis:¹</td>
<td>E</td>
</tr>
</tbody>
</table>
Skin sores and scabies (topical): Evidence grade E

Pregnancy

Leaf

Unsafe when adulterated with colchicine: Evidence level 1c

A case series in the literature reported the presence of colchicine in the placental blood of pregnant women having taken ginkgo. The source of colchicine was traced back to the consumption of commercially available *Ginkgo biloba* products that contained colchicine. Given that colchicine is not a common constituent of ginkgo, the observed finding is most likely due to an adulteration of a ginkgo product by a herb containing colchicine.

Antiplatelet: Evidence level 3

The antiplatelet properties of ginkgo leaf may prolong bleeding during delivery.

Emmenagogue: Evidence level 4

Hormonal changes: Evidence level 4

A herb toxicology and drug interaction compendium reported that ginkgo leaf is an emmenagogue and can cause hormonal changes. Ginkgo leaf was not reported in the medical literature as being an emmenagogue or causing hormonal changes, nor was it reported as being contraindicated in pregnancy.

Roasted seed

Possibly safe if taken as food: Evidence level 4

A toxicology compendium reported that roasted ginkgo seeds may be potentially safe if eaten as a food during pregnancy. Roasted ginkgo seed was not reported in the literature as being either safe or contraindicated in pregnancy.

Raw Seed

Possibly unsafe: Evidence level 4

A toxicology compendium reported that raw ginkgo seeds (nonroasted) may be a concern in pregnancy if they are used medicinally. Raw ginkgo seeds were not reported in the literature as being either safe or contraindicated in pregnancy.
Lactation

Leaf

Unknown: Evidence level 5

Ginkgo leaf was not reported in the literature as being either safe or contraindicated in lactation.

Roasted seed

Possibly safe if taken as food35: Evidence level 4

A toxicology compendium reported that roasted ginkgo seeds may be potentially safe if eaten as a food during lactation.35 Roasted ginkgo seed was not reported in the literature as being either safe or contraindicated in lactation.

Raw seed

Possibly unsafe:36 Evidence level 4

A toxicology compendium reported that raw ginkgo seeds (nonroasted) may be a concern in lactation if they are used medicinally.36 Raw ginkgo seeds were not reported in the literature as being either safe or contraindicated in lactation.

 Constituents

Leaf

Flavonoids:37 rutin, isorhamnetine, quercetin, kaempferol, proanthocyanidins
Terpenoids:5 ginkgolides A, B, C, M and J, bilobalide
Organic acids1

Seed

Cyanogenic glycosides36
Ginkgotoxin35,36

Toxicity

Leaf

- LD_{50} in mice: 7725 mg38
- Crude extracts of ginkgo leaf may contain ginkgolic acids, which are suspected to have cytotoxic, allergenic, mutagenic, and carcinogenic properties.39,40

Seed

- Ginkgotoxin, found in ginkgo seed, may cause seizures, loss of consciousness and death.35,36
Pharmacology

Leaf
- Ginkgo increases cerebral and peripheral blood circulation.41,42
- Ginkgo reduces vascular permeability, causes vascular contraction, improves venous tone, inhibits phosphodiesterase type 4 (PDE4), relaxes vascular smooth muscle via a nitric oxide pathway and improves blood flow to the corpus cavernosum of the penis.22,41–43
- Ginkgo reduces platelet aggregation by competitively binding platelet activating factor (PAF) and by inhibiting the formation of platelet thromboxane A\textsubscript{2}.30,32,33,44
- The ginkgo flavonoids have antioxidant and free radical scavenging properties.5,7,30,32,45
- Partially due to its antioxidant activity, ginkgo inhibits the toxicity and cell death induced by beta-amyloid plaques in Alzheimer disease.46
- Ginkgo decreases systolic and diastolic blood pressure, increases fasting plasma insulin and C-peptide, decreases cortisol secretion and decreases the secretion of corticotrophic releasing hormone (CRH).32,47,48
- Ginkgo may have cholinergic effects and may or may not have a monoamine oxidase inhibitor (MAOI) effect in the central nervous system.7,49–51
- Ginkgo may reverse the decline in brain alpha-adrenoceptor activity that occurs with aging.45
- Ginkgo decreases phagocyte chemotaxis, decreases smooth muscle contraction, prevents degranulation of neutrophils, decreases free radical production, decreases damaging glycine production after brain injury and reduces excitatory amino acid receptor function.5,45,52
- Ginkgo may inhibit cytochrome P450 3A4, induce cytochrome P450 3A5 and mildly inhibit cytochrome P450 1A2 and 2D6.1,53,54

Seed
Cyanogenic glycosides may have antibacterial and antifungal effects.1,36

Drug interactions

Leaf
Anti-coagulant/anti-platelet drugs30,32,33
Fluoxetine55
Buspirone55
St John’s wort55
Melatonin55
Insulin32
Monoamine oxidase inhibitors46–48
Seizure threshold lowering drugs56,57
160 *Herbal medicines*

Thiazide diuretics

Trazodone

Warfarin

Drugs metabolized by cytochrome P450 3A4, P450 3A5, P450 1A2 and P450 2D6 enzymes

Parts used

Leaf, seed

References

GOLDENSEAL
Hydrastis canadensis

Synonyms/common names/related substances
Eye balm, eye root, goldenroot, goldsiegel, ground raspberry, Hydrastis, Indian dye, Indian plant, Indian tumeric, jaundice root, orange root, sceau d’or, warnera, wild curcuma, yellow Indian paint, yellow paint, yellow puccoon, yellow root

Indications

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloroquine-resistant malaria (with pyrimethamine)</td>
<td>B1</td>
</tr>
<tr>
<td>Infectious diarrhea</td>
<td>B1</td>
</tr>
<tr>
<td>Trachoma (Chlamydia trachomatis eye infection)</td>
<td>B2</td>
</tr>
<tr>
<td>Congestive heart failure</td>
<td>C</td>
</tr>
<tr>
<td>Anti-Helicobacter pylori</td>
<td>E</td>
</tr>
<tr>
<td>Anti-tubercular</td>
<td>E</td>
</tr>
<tr>
<td>Narcotic concealment</td>
<td>E</td>
</tr>
<tr>
<td>Upper respiratory tract infections</td>
<td>E</td>
</tr>
<tr>
<td>Cancer prevention</td>
<td>E</td>
</tr>
</tbody>
</table>

Pregnancy

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>May cause newborn jaundice (kernicterus)</td>
<td>3</td>
</tr>
</tbody>
</table>

In rats, berberine displaces bilirubin bound to albumin. Berberine (10–20 µg/g) was administered intraperitoneally to adult rats on a daily basis for 1 week. After 1 week, a significant decrease in mean bilirubin serum protein binding was observed due to an in vivo displacement effect by berberine. A persistent elevation in serum concentrations of unbound and total bilirubin was also observed.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uterine stimulant</td>
<td>4</td>
</tr>
</tbody>
</table>

A review article on the potential value of plants as sources of anti-fertility agents reported that goldenseal contains the uterine stimulant berberine. A herbal and drug interaction compendium reported that goldenseal also contains the uterine stimulant components hydrastine, canadine, and hydrastinine.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxytocic effects</td>
<td>4</td>
</tr>
</tbody>
</table>
Two herbal toxicology compendia reported that goldenseal has oxytocic effects during pregnancy.18,21 Goldenseal, however, was not reported in the evidence-based medical literature as having oxytocic properties.

Lactation

May cause or aggravate newborn jaundice (kernicterus):17 Evidence level 3

In rats, berberine displaces bilirubin bound to albumin.17 Berberine (10–20 \(\mu \)g/g) was administered intraperitoneally to adult rats on a daily basis for 1 week.17 After 1 week, a significant decrease in mean bilirubin serum protein binding was observed due to an in vivo displacement effect by berberine.17 A persistent elevation in serum concentrations of unbound and total bilirubin was also observed.17

Contraindication

Newborn jaundice (kernicterus)17

Constituents

Isoquinoline alkaloids,8,20,22 hydrastine, berberine, tetrahydroberberastine, berberastine, canadaline, canadine, hydragastine, \(\beta \)-hydrastine

Toxicity

\(\text{LD}_{50} \) of berberine in humans:18 27.5 mg/kg

Pharmacology

- Berberine was found to displace bilirubin bound to albumin in vitro.17 Berberine was found to be about 10 times superior to phenylbutazone, a known potent displacer of bilirubin, and about 100 times superior to papaverine, a berberine-type alkaloid.17
- Hydrastine and berberine have been shown to have antibacterial activity.12,13,23–26
- Hydrastine and berberine have been shown to have amebicidal, anti-parasitic (trypanocidal) and anti-fungal activity.23,27–30
- Berberine and beta-hydrastine were shown to have anti-\textit{Helicobacter pylori} activity in vitro.8
- Berberine derived from goldenseal has been shown to have anti-tubercular activity in vitro.9
- At low doses hydrastine may have a hypotensive effect and at higher doses hydrastine constricts peripheral blood vessels and may potentially cause a hypertensive effect.23
- In low doses, berberine may act as a cardiac and respiratory stimulant and in high doses it may act as a cardiac and respiratory depressant.18,23,31
- Berberine was shown to have anti-platelet activity.32
- Goldenseal was shown to increase immune function and berberine was shown to have anti-inflammatory effects.33–37
- Berberine was found to have antidiarrheal effects.38
Berberine was found to inhibit parathyroid hormone-stimulated bone resorption, inhibit osteoclastic bone resorption, and prevent a decrease in bone mineral density of the lumbar vertebra.\(^{39}\)

Goldenseal may interfere with cytochrome P450 3A4 (CYP3A4) enzyme.\(^{40}\)

Drug interactions

<table>
<thead>
<tr>
<th>Acid-inhibiting drugs(^1,)(^{41})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-hypertensive agents(^{21})</td>
</tr>
<tr>
<td>Barbiturates(^{22})</td>
</tr>
<tr>
<td>Anticoagulant drugs(^{32})</td>
</tr>
<tr>
<td>Highly protein-bound drugs(^{17})</td>
</tr>
<tr>
<td>Sedative drugs(^{21})</td>
</tr>
<tr>
<td>Drugs metabolized by cytochrome P450 3A4 (CYP3A4) enzyme(^{40})</td>
</tr>
</tbody>
</table>

Parts used\(^{20}\)

Root, rhizome

References

GREEN TEA
Camellia sinensis

Synonyms/common names/related substances
C. thea, C. theifera, Chinese tea, EGCG, Japanese tea, tea, tea green, Thea sinensis, T. boeha, T. viridis

Indications

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cancer prevention:2–8</td>
<td>A</td>
</tr>
<tr>
<td>Oral leukoplakia:9</td>
<td>B1</td>
</tr>
<tr>
<td>Improves cognitive performance:10</td>
<td>C</td>
</tr>
<tr>
<td>Elevated cholesterol and triglycerides:11</td>
<td>C</td>
</tr>
<tr>
<td>Cardiovascular disease prevention:11</td>
<td>C</td>
</tr>
<tr>
<td>Liver disease prevention:11</td>
<td>C</td>
</tr>
<tr>
<td>Parkinsonism prevention:12</td>
<td>C</td>
</tr>
</tbody>
</table>

Pregnancy

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimal risk:13</td>
<td>1b</td>
</tr>
</tbody>
</table>

A comparison study on the effects of green tea consumption on iron absorption during pregnancy was conducted.13 Pregnant women were given sodium ferrous citrate along with green tea in one group and water in another.13 The authors reported that green tea did not interfere with iron absorption nor did they report any serious side effects in the pregnant women.13

Spontaneous abortion:14,15 | Evidence level 1b

A case–control study of 3149 pregnant women reported that serum paraxanthine concentration, a caffeine metabolite, was higher in women who had spontaneous abortions than in controls.14 A case–control study of 1498 pregnant women reported that the consumption of 375 mg or more caffeine per day during pregnancy may increase the risk of spontaneous abortion.15

Increased risk of stillbirth:16 | Evidence level 1b

A prospective follow-up study of 18 478 singleton pregnancies in women with valid information about coffee consumption during pregnancy reported that pregnant women who drink eight or more cups of coffee per day have double the risk of stillbirth when compared with women who do not drink coffee.
170 *Herbal medicines*

during pregnancy.16 Although this study was related to coffee, there could also be an increased risk of stillbirth with proportional intake of green tea.

<table>
<thead>
<tr>
<th>Low birthweight infants:17,18</th>
<th>Evidence level 1b</th>
</tr>
</thead>
<tbody>
<tr>
<td>A large prospective study on 2291 mothers reported that women consuming more than 600 mg of caffeine per day are at greater risk for having low birthweight infants.18 A prospective study on 63 women reported that pregnant non-smokers consuming caffeine more than 300 mg/day had statistically significant lower weights of newborns and placentas (p<0.05).17</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teratogenic compounds:19–22</th>
<th>Evidence level 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elevated caffeine intake causes histopathologically teratogenic effects on newborn rat cornea.19 A review study, however, reported that when caffeine is administered in fractioned quantities during the day, as is the case with human caffeine intake, caffeine is no longer a teratogen in animals.23</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Harmful to the fetus:24</th>
<th>Evidence level 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>A compendium on the safety of drugs in pregnancy and lactation reported that over 300 mg of caffeine a day may be harmful to the fetus.24</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>300 mg of caffeine throughout the day – possibly safe:25,26</th>
<th>Evidence level 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>A drug compendium and a review study reported that approximately 300 mg of caffeine consumed throughout the day seems safe during pregnancy.25,26</td>
<td></td>
</tr>
</tbody>
</table>

Lactation

<table>
<thead>
<tr>
<th>Teratogenic compounds:19–22</th>
<th>Evidence level 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elevated caffeine intake causes histopathologically teratogenic effects on newborn rat cornea.19 Since caffeine appears in breast milk at half the concentration as in the mother’s plasma, newborns may be exposed to teratogenic compounds.27 A review study, however, reported that when caffeine is administered in fractioned quantities during the day, as it is the case with human caffeine intake, caffeine is no longer a teratogen in animals.23</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>May cause sleeping disorders:28</th>
<th>Evidence level 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>A compendium on herbal medicine reported that nursing mothers who consume caffeine may have infants with sleeping disorders.28</td>
<td></td>
</tr>
</tbody>
</table>

Constituents

- Polyphenols:29,30 gallic acid
- Catechins:29,30 epigallocatechin gallate (EGCG), epigallocatechin (EGC), epicatechin gallate (ECG), epicatechin (EC)
- Caffeine 2–4% or 10–80 mg caffeine per cup.31–33
Toxicity
Caffeine in doses greater than 1 g/(body surface in m²) taken three times daily is associated with a higher incidence of side effects.34

Pharmacology
- ECG appears to induce apoptosis in cancer cells by reactive oxygen species formation and mitochondrial depolarization.30
- EGCG may have anti-angiogenic activity by preventing new blood vessel growth in tumors and may inhibit tumor cell proliferation.34–37
- The catechins may reduce lipoprotein oxidation and proliferation of vascular smooth muscle that occurs with high concentrations of low-density lipoproteins.38–41
- Topically, EGCG and epicatechin-3-gallate may protect against UVA and UVB sunburn.1
- EGCG may prevent oxidation and apoptosis of neurons, which may protect people from developing Alzheimer disease.42
- Green tea is an antioxidant, thereby reduces oxidative DNA damage, lipid peroxidation and free radical generation.43
- Green tea may reduce mutagenic activity in smokers.44
- The tannins may have anti-diarrheal properties.45
- The polyphenols increase levels of lactobacilli and bifidobacteria, and reduce levels of Enterobacteriaceae.46
- Through caffeine preventing adenosine’s inhibition of dopaminergic transmission, green tea may reduce the clinical expression of parkinsonism.47
- Green tea may have antiplatelet activity.3,48,49

Caffeine
- Caffeine is a central nervous system stimulant.28,29,50
- Caffeine increases blood pressure, heart rate and heart contractility.39,50,51
- Caffeine improves cognitive performance.10
- Caffeine stimulates gastric acid secretion.50
- Caffeine is a diuretic.50

Drug interactions
Adenosine (Adenocard)52
Anti-coagulant, anti-platelet agents3,48,49
Anti-psychotic drugs53,54
Aspirin, acetaminophen (Tylenol)55
Barbiturates56
Benzodiazepines52
β-Adrenergic agonists50
Chlorpromazine (Thorazine)52
Cimeticidine (Tagamet)57
Clozapine (Clozaril)52,56,58
Disulfiram (Antabuse)50
Ephedrine52
Ergotamine (Ergomar)50
Lithium (Eskalith, Lithobid)59,60
Monoamine oxidase inhibitors52
Mexiletine (Mexitil)61
Oral contraceptives57
Phenylpropanolamine (Propagest, Rhindecon)52
Phenytoin (Dilantin)52
Quinolones61–64
Theophylline (Theo-Dur)56
Verapamil (Calan, Isoptin)57
Warfarin (Coumadin)48,65–68

\textit{Parts used}
Leaf bud, leaf, and stem1

\textit{References}
Herbal medicines

57. MICROMEDEX. Micromedex Healthcare Series. Englewood, CO: MICROMED EX.
GUGGUL
Commiphora mukul

Synonyms/common names/related compounds
Guggal, guggul gum resin, guggulipid, guggulipids, guggulu, guggulsterone, guggulsterones, gum guggal, gum gugglu, gum guggulu, Indian bdellium-tree, mukul myrrh, mukul myrrh tree

Indications

<table>
<thead>
<tr>
<th>Indication</th>
<th>Evidence grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conflicting evidence – hyperlipidemia: 2–8</td>
<td>Evidence grade B1</td>
</tr>
<tr>
<td>Nodulocystic acne: 9</td>
<td>Evidence grade C</td>
</tr>
<tr>
<td>Obesity: 10, 11</td>
<td>Evidence grade C</td>
</tr>
<tr>
<td>Rheumatoid arthritis: 12, 13</td>
<td>Evidence grade D</td>
</tr>
<tr>
<td>Osteoarthritis (with gold): 14, 15</td>
<td>Evidence grade D</td>
</tr>
<tr>
<td>Osteoarthritis: 16</td>
<td>Evidence grade E</td>
</tr>
</tbody>
</table>

* A number of studies, including randomized controlled trials, reported that guggul has lipid-lowering effects. 2–8 A 2003 randomized controlled trial on guggul, however, reported that guggulipid did not appear to improve levels of serum cholesterol in adults with hypercholesterolemia, and might in fact raise levels of low-density lipoprotein-C. 17 Given that this contradicts a number of previously published trials, further investigation is required.

Pregnancy

<table>
<thead>
<tr>
<th>Indication</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potential abortifacient: 18</td>
<td>Evidence level 4</td>
</tr>
<tr>
<td>Emmenagogue: 18</td>
<td>Evidence level 4</td>
</tr>
<tr>
<td>Uterine stimulant: 19, 20</td>
<td>Evidence level 4</td>
</tr>
</tbody>
</table>

A review article on the potential value of plants as sources of anti-fertility agents reported that guggul was a potential abortifacient and an emmenagogue. 18 A herbal toxicology and drug interaction compendium and a herb safety compendium reported that guggul was a uterine stimulant. 19, 20

Lactation

<table>
<thead>
<tr>
<th>Indication</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unknown:</td>
<td>Evidence level 5</td>
</tr>
</tbody>
</table>

There are no reports in the literature of guggul being either safe or contraindicated during lactation.
Constituents

- Ketonic steroids: Z-guggulsterone and E-guggulsterone
- Essential oils: curzerenone, furanodiene-6-one and furanoeudesma-1,3-diene
- Resin

Toxicity

LD$_{50}$: 1.6 g/kg

Pharmacology

- Guggul extract, also known as guggulipid (usually standardized to 2.5% guggulsterones), is an ethyl acetate extract of the gum resin that contains both Z- and E-guggulsterones.
- Guggulsterones inhibit the synthesis of cholesterol in the liver and appear to have an antioxidant effect on lipids.
- Guggul may lower lipoprotein (a) and C-reactive protein.
- Guggul is an antagonist ligand for farnesoid X receptor (FXR) where it decreases expression of bile acid-activated genes.
- Guggulsterones may have thyroid-stimulating activity where they increase the conversion of T4 to T3.
- Guggul may have a protective effect against drug-induced myocardial necrosis.
- In acne, guggulipid may reduce secretion of sebum and inhibit bacterial metabolism of triglycerides.
- Guggul may have anti-inflammatory activity.
- Guggul may have anti-platelet and anti-coagulant activity.

Drug interactions

Anti-coagulant/anti-platelet drugs
Diltiazem
Propranolol
Thyroid drugs

Parts used

Gum resin

References

HAWTHORN
Crataegus oxyacantha, C. cuneata, C. laevigata

Synonyms/common names/related substances
Aubepine, blanca spino, crataegi flos, crataegi folium, crataegi folium cum flore, crataegi fructus, English hawthorn, epine blanche, epine de mai, haagdorn, hagedorn, harthorne, haw, hawthorn extract, hawthorn flower, hawthorn fruit, hawthorn leaf, hawthorne, hedgethorn, may, maybush, maythorn, mehlbeebaum, meidorn, nan shanzha, oneseed hawthorn, shazha, weissdorn

Indications

<table>
<thead>
<tr>
<th>Indication</th>
<th>Evidence grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Congestive heart failure:²</td>
<td>A</td>
</tr>
<tr>
<td>Coronary artery disease (angina):³</td>
<td>B₁</td>
</tr>
<tr>
<td>Functional cardiovascular disorders (with camphor):⁴</td>
<td>B₁</td>
</tr>
</tbody>
</table>

Pregnancy

<table>
<thead>
<tr>
<th>Uterine activity:⁵</th>
<th>Evidence level 4</th>
</tr>
</thead>
</table>
A herbal medicine compendium reported that hawthorn has uterine activity and is unsafe during pregnancy.⁵ There are no reports in the medical literature of hawthorn being safe or contraindicated during pregnancy.

Lactation

<table>
<thead>
<tr>
<th>Unknown:</th>
<th>Evidence level 5</th>
</tr>
</thead>
</table>
There are no reports in the literature of hawthorn being safe or contraindicated during lactation.

Constituents

<table>
<thead>
<tr>
<th>Flavonoids⁶</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procyanidins⁶</td>
</tr>
<tr>
<td>Vtexasin⁶</td>
</tr>
<tr>
<td>Rutin⁶</td>
</tr>
<tr>
<td>Hyperoside⁶</td>
</tr>
</tbody>
</table>

Toxicity

- LD₅₀: 18–24 mL/kg (intravenous) and 18.5–33.8 mL/kg (oral)⁷⁻⁹
- Acute toxicity (LD₅₀) of isolated flavonoid constituents: 50–2600 mg/kg (intravenous) and 6 g/kg (oral)⁷⁻⁹
Pharmacology

- Hawthorn acts on the myocardium by increasing the force of contraction and by lengthening the refractory period.\(^6,10\)
- Hawthorn has antiarrhythmic activity by prolonging refractory period of the action potential.\(^11\)
- Hawthorn reduces peripheral vascular resistance and oxygen consumption, and increases nerve conductivity.\(^6,12\)
- Hawthorn increases coronary blood flow, vasodilation, and has a positive inotropic effects by increasing calcium membrane permeability and inhibiting phosphodiesterase (which increases intracellular cyclic AMP).\(^12,13\)
- Hawthorn reduces lipid levels.\(^1\)
- Hawthorn has antibacterial properties.\(^14\)
- Hawthorn has spasmolytic and analgesic effects.\(^14\)
- Hawthorn may decrease uterine tone and motility.\(^1\)

Drug interactions

Cardiovascular drugs\(^5,15\)

- Central nervous system depressants\(^5,6\)
- Coronary vasodilators\(^6\)
- Digoxin\(^6,15\)

Parts used\(^1\)

Leaf, fruit, and flower

References

HORSECHESTNUT
Aesculus hippocastanum

Synonyms/common names/related substances
Buckeye, chestnut, escine, Hippocastani cortex, Hippocastani flos, Hippocastani folium, Hippocastani semen, horse chestnut, marron european, Spanish chestnut, venastat, venostat, venostasin retard

Indications

Horse chestnut seed extract (HCSE)
- Chronic venous insufficiency: Evidence grade A

Escin gel (2%) – topical
- Hematoma: Evidence grade B2

Escin
- Postoperative edema and thrombosis: Evidence grade B2

Esculin
- Hemorrhoids: Evidence grade C

Pregnancy

HCSE
- Minimal risk: Evidence level 1a

A randomized placebo-controlled trial of 52 women with leg edema attributed to pregnancy-induced venous insufficiency failed to observe any serious adverse effects after 2 weeks. Subjects received 300 mg twice daily of Venostasin [reg] retard (240–290 mg of horse chestnut seed extract, standardized to 50 mg escin).

Unprocessed (raw) horsechestnut preparations
- Toxic – contraindicated in pregnancy and lactation: Evidence level 4

Unprocessed (raw) horsechestnut preparations (seed, bark, flower, leaf) can be lethal when ingested. In adults, a few chestnuts can cause severe symptoms, whereas in children, a few chestnuts can be lethal. It has been reported that
roasting horsechestnut appears to destroy its toxins. Unprocessed horsechestnut was not reported in the literature as being either contraindicated or safe for use during pregnancy.

Lactation

HCSE

<table>
<thead>
<tr>
<th>Unknown:</th>
<th>Evidence level 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>There are no reports in the literature of horse chestnut seed extract being either safe or contraindicated during lactation.</td>
<td></td>
</tr>
</tbody>
</table>

Unprocessed (raw) horsechestnut preparations

<table>
<thead>
<tr>
<th>Toxic – contraindicated in pregnancy and lactation:27,28</th>
<th>Evidence level 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unprocessed (raw) horsechestnut preparations (seed, bark, flower, leaf) can be lethal when ingested.28 In adults, a few chestnuts can cause severe symptoms, whereas in children, a few chestnuts can be lethal.27 It has been reported that roasting horsechestnut appears to destroy its toxins.27 Unprocessed horsechestnut was not reported in the literature as being either contraindicated or safe for use during lactation.</td>
<td></td>
</tr>
</tbody>
</table>

Caution

Diabetes or glucose intolerance29

Constituents

- Triterpene saponins:1,29–32 triterpene oligoglycosides (escins Ia, Ib, IIa, IIb, IIIa), acylated polyhydroxyoleanene triterpene oligoglycosides (escins IIIb, IV, V, VI), isoescins (Ia, Ib, V)
- Sapogenols:1,29–32 hippocaesculin, barringtogenol-C
- Hydroxycoumarin lactone glycoside:27 esculin
- Sterols:1,29–32 stigmasterol, α-spinasterol, β-sitosterol
- Fatty acids:1,29–32 linolenic, palmitic, stearic acids
- Flavonoids1,29–32
- Tannins1,29–32
- Quinines1,29–32

Toxicity

- The constituent esculin is associated with significant toxicity.28
- HCSE which is standardized to escin content should not contain clinically relevant levels of esculin, and thus most toxicities will not be of concern.28
Pharmacology

Unprocessed (raw) horsechestnut preparations

- Esculin causes neural stimulation and increases antithrombin activity, thereby leading to increased bleeding time.27
- Esculin is a mucous membrane irritant.27

HCSE

- Escin, the active ingredient in horse chestnut seed extract has anti-exudative and vascular-tightening effects.31
- HCSE reduces vascular permeability, reduces the activity of lysosomal enzymes and inhibits the breakdown of glycoacalyx in the capillary walls.31
- HCSE contracts canine and human isolated saphenous veins in vitro, possibly due to preferential formation of the vasoconstrictive eicosanoid PGF2-α.33–35
- HCSE increases femoral venous pressure and flow, decreases the formation of edema, and suppresses plasma extravasation and leucocyte emigration into the pleural cavity.34,36
- HCSE has antioxidant effects.34

Drug interactions

Hypoglycemic agents29
Anti-coagulant/anti-platelet therapy27

Parts containing toxins27

Seeds, bark, leaves, pericarp of fruit twigs, and non-medicinal flowers

References

17. Nill HJ, Fischer H. [Comparative investigations concerning the effect of extract of horse chestnut upon the pressure-volume-diagramm of patients with venous disorders]. Arztl Forsch 1970; 24:141–143.

JUNIPER
Juniperus communis

Synonyms/common names/related compounds
Common juniper berry, enebro, genièvre, ginepro, Juniperi fructus, wacholderbeeren, zimbro

Indications

<table>
<thead>
<tr>
<th>Indication</th>
<th>Evidence Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common cold (with peppermint oil, cajeput oil, eucalyptus oil and methylquinolinium oil)</td>
<td>C</td>
</tr>
<tr>
<td>Renoprotective</td>
<td>E</td>
</tr>
<tr>
<td>Anti-mycobacterial activity</td>
<td>E</td>
</tr>
<tr>
<td>Hypoglycemic</td>
<td>E</td>
</tr>
<tr>
<td>Antibacterial and antifungal</td>
<td>E</td>
</tr>
<tr>
<td>Diuretic and aquaretic</td>
<td>F</td>
</tr>
<tr>
<td>Cystitis</td>
<td>F</td>
</tr>
</tbody>
</table>

Pregnancy

<table>
<thead>
<tr>
<th>Indication</th>
<th>Evidence Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abortifacient</td>
<td>3</td>
</tr>
<tr>
<td>Blocks progesterone production</td>
<td>3</td>
</tr>
</tbody>
</table>

Juniper was reported to cause abortions in pregnant cattle. Isocupressic acid is believed to be the primary abortifacient compound in juniper. Cows fed juniper needles subsequently aborted after 3–4 days. Other studies on isocupressic acid have also shown that it has an abortive effect in pregnant cattle. A review article on the potential value of plants as sources of anti-fertility agents reported that juniper was an abortifacient.

Isocupressic acid was reported to block progesterone production in bovine luteal cells. It was concluded that isocupressic acid can induce pregnant cows to abort partly through blocking luteal function.

Anti-implantation activity and interferes with fertility

A study on the anti-implantation activity in female albino rats of a number of herbs found that juniper had 60–70% anti-implantation activity. An editorial review of contraceptive products reported that the Drug Research Institute in Lucknow, India, US National Institutes of Health, the World Health Organization,
and the Indian Council of Medical Research confirm that juniper has anti-
implantation effects.15

<table>
<thead>
<tr>
<th>Emmenagogue:13</th>
<th>Evidence level 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uterine stimulant:17,18</td>
<td>Evidence level 4</td>
</tr>
</tbody>
</table>

A review article on the potential value of plants as sources of anti-fertility
agents reported that juniper was an emmenagogue.13 A herbal toxicology and
drug interaction compendium and a herbal medicine compendium reported
that juniper is a uterine stimulant.17,18

\textbf{Lactation}

| May cross into breast milk:19 | Evidence level 3 |

Supplementing the diet of rabbit does with aromatic juniper berries before and
after pregnancy led offspring to have a preference for juniper berries in their
diet.19 The authors theorized that this may imply a transfer of the preference
from mother to offspring through breast-feeding.19

\textbf{Contraindications}

- Nephritis17
- Pyelitis17

\textbf{Caution}

- Avoid use for more than 4 weeks without medical advice.17
- Topical use over large skin wounds or in individuals with acute skin conditions.20
- Some authors report that long-term use of juniper may cause convulsions or
kidney damage,21,22 others report that it is non-toxic.23

\textbf{ Constituents}

- Volatile monoterpenes:7,17 \(\alpha\)-pinene, \(\beta\)-pinene, \(\beta\)-myrcene
- Volatile alcohol:17,18 terpinen-4-ol
- Isocupressic acid9

\textbf{Toxicity}

- LD\textsubscript{50} of juniper extract in mice (intraperitoneal injection): 3 g/kg24
- LD\textsubscript{50} of juniper oil in rats (oral): 6.28 g/kg17
- LD\textsubscript{50} of terpinen-4-ol in mice and rats (intramuscular): 0.78 mL/kg and
1.5 mL/kg, respectively17

\textbf{Pharmacology}

- Animal studies have found that juniper oil did not induce changes in function
or morphology of the kidneys and was reported as non-toxic.23
The diuretic action of juniper is attributed to the terpinen-4-ol portion which is purported to stimulate glomerular filtration.18,25

The volatile monoterpenes are irritants to the urinary mucosa.17

Studies have identified isocupressic acid as the primary abortifacient compound in juniper.9 In vitro and in vivo studies have shown isocupressic acid is rapidly metabolized to agathic acid, dihydroagathic acid, and tetrahydroagathic acid.9

Juniper demonstrated hypoglycemic activity in both rats and mice.26,27

Juniper was shown to have antifungal, antiviral (against herpes simplex virus 1) and anti-inflammatory properties.6,18

Oral administration of an extract of juniper berries was seen to decrease experimentally induced foot edema in rats.28

Juniper oil was found to inhibit the growth of \textit{Mycobacterium tuberculosis} and \textit{M. avium}.4

\textbf{Drug interactions}1

- Anti-diabetic drugs18
- Diuretics8,18

\textbf{Parts used}1,17

Berries and oil

\textbf{References}

KAVAL

Piper methysticum

Synonyms/common names/related compounds

Ava, ava pepper, ava root, awa, gea, gi, intoxicating long pepper, intoxicating pepper, kao, kava kava, kava-kava, kava-kava root, kava pepper, kava root, kavain, kavapipar, kawa, kawa kawa, kawa-kawa, kawa pepper, kawapfeffer, kew, long pepper, Maori kava, malohu, maluk, meruk, milik, rauschpfeffer, rhizome di kava-kava, sakau, tonga, wurzelstock, yagona, yawona, yaqona, yongona

Indications

Anxiety: Evidence grade A

Pregnancy

May be hepatotoxic (rare): Evidence level 1a

Although there are 68 case reports of hepatotoxicity related to kava, recent systematic reviews have concluded that only two of the original documented cases can be directly linked to kava. A systematic review concluded that the hepatotoxicity observed was likely an immunologically mediated idiosyncratic mechanism, rather than a direct toxic mechanism.

May cause loss of uterine tone: Evidence level 4

Safety unknown: Evidence level 5

A herbal monograph and a herbal toxicology and drug interaction compendium report that kava may cause loss of uterine tone during pregnancy. There are no reports in the scientific literature of kava being either safe or contraindicated during pregnancy.

Lactation

May cross into breast milk: Evidence level 4

Safety unknown: Evidence level 5

A herbal monograph reported that the pyrone constituents may cross into breast milk with unknown effects. There are no reports in the scientific literature of kava being either safe or contraindicated during lactation.
Contraindications
Existing liver disease12
Parkinson disease12
Existing pulmonary disease12

Caution
Avoid long-term use12
Avoid daily doses above 300 mg12
Operating heavy machinery12
Endogenous depression10,13

Constituents
Kavalactones (also called kavapyrones),14,15 methysticin, dihydromethysticin (DMH), yangonin, dihydrokavain (DHK), kawain (kavalin)

Toxicity
\begin{itemize}
 \item LD\textsubscript{50} of kavalactones: approximately 300–400 mg/kg16
 \item LD\textsubscript{50} (oral) of dihydrokavain: 920 mg/kg16
 \item LD\textsubscript{50} (oral) of dihydromethysticin: 1050 mg/kg16
 \item LD\textsubscript{50} of standardized kava extract (containing 70% kava lactones): 16 g/kg (oral, rats), 1.8 g/kg (oral, mice), 370 mg/kg (intraperitoneal, rats) and 380 mg/kg (intraperitoneal, mice)17
 \item Doses of 50 mg/kg of dihydrokavain three times a week for 3 months to rats produced no evidence of chronic toxicity18
\end{itemize}

Pharmacology
\begin{itemize}
 \item People consuming kava have reported feeling more sociable, tranquil, and generally happy.19
 \item Kava’s sedative effects may result from an increase in the number of γ-aminobutyric acid binding sites.15,20,21
 \item Kava’s sedative effects may also result from dopamine antagonism, particularly by the yangonin constituent.22–25
 \item The kavapyrones methysticine and kavain may inhibit the uptake of noradrenaline, thereby contributing to the psychotropic actions of kava.22
 \item Kava has not been shown to affect benzodiazepine receptors.26,27
 \item Kava may affect the limbic system.28
 \item Kava appears to produce motor sedation without affecting respiratory processes.29
 \item Kava may cause muscle paralysis and numb the mouth through a mechanism similar to local anesthetics such as cocaine.19,30
 \item The kavapyrones desmethoxyyangonin and methysticin appear to competitively inhibit monoamine oxidase B.31
 \item Kava may inhibit enzymes in the cyclooxygenase-1 and -2 pathways.32
 \item The kavapyrone kavain inhibits cyclooxygenase and decreases the synthesis of thromboxane A2, thereby decreasing platelet aggregation.33
\end{itemize}
Kava may affect the following cytochrome P450 enzymes: P450 2C19 (CYP2C19), P450 1A2 (CYP1A2), P450 2C9 (CYP2C9), P450 2D6 (CYP2D6), and P450 3A4 (CYP3A4).

Drug interactions

- Alprazolam
- Anti-coagulant/anti-platelet drugs
- Central nervous system depressants
- Drugs metabolized by cytochrome P450 2C19 (CYP2C19), P450 1A2 (CYP1A2), P450 2C9 (CYP2C9), P450 2D6 (CYP2D6) and P450 3A4 (CYP3A4)
- Hepatotoxic drugs
- Levodopa (Larodopa, Dopar)
- Monoamine oxidase inhibitors

Parts used

Rhizome, root, and stem

References

KOREAN GINSENG
Panax ginseng, P. schinseng

Synonyms/common names/related substances
Asian ginseng, Asiatic ginseng, Chinese ginseng, ginseng, ginseng asiatique, Ginseng radix, ginseng root, guigai, hong shen, Japanese ginseng, jen-shen, jinsao, jintsam, insam, Korean ginseng, Korean panax ginseng, Korean red ginseng, ninjin, Oriental ginseng, Panax ginseng, Radix ginseng rubra, red ginseng, ren shen, renshen, renxian, sang, seng, sheng shai shen, white ginseng

Indications

<table>
<thead>
<tr>
<th>Indication</th>
<th>Evidence grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erectile dysfunction:2</td>
<td>B1</td>
</tr>
<tr>
<td>Premature ejaculation:3</td>
<td>B1</td>
</tr>
<tr>
<td>Type 2 diabetes:4</td>
<td>B1</td>
</tr>
<tr>
<td>Improves memory (with Ginkgo biloba):5,6</td>
<td>B1</td>
</tr>
<tr>
<td>Potentiates against influenza and the common cold (with influenza vaccine):7</td>
<td>B1</td>
</tr>
<tr>
<td>Improves cognitive function:8</td>
<td>B2</td>
</tr>
<tr>
<td>Chronic bronchitis (with antibiotics):9</td>
<td>C</td>
</tr>
<tr>
<td>Cancer prevention:10,11</td>
<td>C</td>
</tr>
</tbody>
</table>

Pregnancy

Conflicting evidence

<table>
<thead>
<tr>
<th>Category</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-estrogenic</td>
<td>1a</td>
</tr>
<tr>
<td>Estrogenic</td>
<td>2</td>
</tr>
</tbody>
</table>

A randomized controlled trial of 384 women receiving either ginseng extract or placebo for 16 weeks showed that the beneficial effects in the treatment of menopause are most likely not mediated by hormone replacement-like effects, as physiologic parameters such as follicle-stimulating hormone and estradiol levels, endometrial thickness, maturity index, and vaginal pH were not affected by the treatment.12

On the other hand, there are case reports and animal studies of estrogenic activity, postmenopausal vaginal bleeding, and increased serum ceruloplasmin oxidase activity and that ginsenoside Rb1 acts as a phytoestrogen.14–20 A review
article on the potential value of plants as sources of anti-fertility agents also reported that Korean ginseng has estrogenic activity.13

\begin{tabular}{|l|l|}
\hline
Minimal risk:21 & Evidence level 1b \\
\hline
Treatment of intrauterine growth retardation:21 & Evidence level 1b \\
\hline
\end{tabular}

A comparison study on pregnant women with intrauterine growth retardation was conducted where one group of women received Korean ginseng while the other group acted as controls.21 The height of fundus, fetal biparietal diameter, urinary estrogens/creatinine, serum human placental lactogen, and neonatal weights approached normal pregnancy values.21 The authors did not report any adverse effects associated with ginseng supplementation.21

\begin{tabular}{|l|l|}
\hline
No evidence to support androgenization:22,23 & Evidence level 2 \\
\hline
\end{tabular}

A case was reported of a 30-year-old woman who gave birth to a full-term baby boy with signs of androgenization following ingestion of ‘ginseng’ during her pregnancy.23 After further investigation, the herbal preparation used by the mother appeared to be adulterated by the herb silk vine (\textit{Periploca sepium}) and not Siberian ginseng (\textit{Eleutherococcus senticosus}).22

\begin{tabular}{|l|l|}
\hline
Protects neonatal brain against ethanol damage:24 & Evidence level 3 \\
\hline
\end{tabular}

A study reported that ginseng extract prevented ethanol-induced reduction of neonatal brain weight in rats.24 The ginseng saponins, including ginsenosides Rg1, Rb2, Rd, Rf, and Re, were shown to stimulate a potent recovery of cerebellum growth.24

\begin{tabular}{|l|l|}
\hline
Teratogenic:25 & Evidence level 3 \\
\hline
\end{tabular}

A study on organogenesis found that ginsenosides exert direct teratogenic effects on rat embryos.25

\begin{tabular}{|l|l|}
\hline
Activates DNA polymerase delta in placenta:26 & Evidence level 3 \\
\hline
\end{tabular}

Ginsenosides from \textit{P. ginseng} were found to activate DNA polymerase delta in bovine placenta.26

\begin{tabular}{|l|l|}
\hline
May cause neonatal death:27 & Evidence level 4 \\
\hline
\end{tabular}

An evidence-based natural product compendium reported that there is one report of neonatal death following use of \textit{P. ginseng}.27 There were no reports in the scientific literature of \textit{P. ginseng} causing neonatal death.

\begin{tabular}{|l|l|}
\hline
Traditionally used during pregnancy:28 & Evidence level 4 \\
\hline
\end{tabular}
Researchers conducted a review of the herbs used during pregnancy in Singapore. Korean ginseng was used in various combinations and in various amounts in herbal prescriptions during pregnancy. The researchers could not confirm that the claims made by Chinese herbalists on the efficacy of Korean ginseng in pregnancy were substantiated. They concluded that there is no specific effect on the pregnant woman, but that it does not exclude the possibility of a beneficial psychosomatic effect. The researchers also noted that the active principles can cross the placenta and reach the fetus. The authors did not discuss if Korean ginseng was safe or contraindicated during pregnancy.

Lactation

<table>
<thead>
<tr>
<th>Minimal risk:29–31</th>
<th>Evidence level 3</th>
</tr>
</thead>
</table>

Cows with subclinical mastitis caused by *Staphylococcus aureus* were subjected to subcutaneous injections with an extract from the root of Korean ginseng. Based on blood leukocyte measurements, ginseng treatment was found to activate the innate immunity of cows and contribute to the cow’s recovery from mastitis. The authors did not report any adverse effects associated with the use of Korean ginseng during lactation. Two other studies by the same authors conducted in lactating cows found similar results where Korean ginseng increased leukocyte activity and no adverse effects were reported.

Constituents

- Triterpenoid saponins: ginsenosides (Rg1, Rb1)
- Polyacetylenic constituents: panaxynol, panaxydol, panaxytriol
- Panaxagin
- Essential oil
- Phytosterol
- Pectin
- B vitamins
- Flavonoids

Toxicity

Very low incidence of toxicity has been observed in ginseng clinical trials using well-characterized preparations.

Pharmacology

- Ginseng is frequently used as a general tonic, adaptogen and restorative due to its anti-fatigue, immunologic, and hormonal qualities.
- Ginsenosides increase serum cortisol levels, stimulate adrenal function, and, in women, increase dehydroepiandrosterone sulfate.
- Ginsenoside Rb1 lowers blood pressure and acts as a central nervous system depressant.
- Ginsenosides interfere with platelet aggregation and coagulation.
Ginsenosides have analgesic and anti-inflammatory effects.42

Ginsenosides potentiate nerve growth factor and may have a neuroprotective effect through nicotinic activity.35,43

Ginsenosides have anti-asthmatic effects through the relaxation of human bronchial smooth muscle by stimulating the release of nitrous oxide from airway epithelium.44

\textit{P. ginseng} has anti-tumor activity.11,32,45 The polyacetylenic constituent panaxydol seems to have anti-proliferative effects on various types of cancer cell.32

\textit{P. ginseng} has shown inhibitory activity on \textit{Helicobacter pylori}.46

\textit{P. ginseng} promotes the growth of normal intestinal flora while inhibiting clostridial species.47

\textit{P. ginseng} may lower cholesterol and triglycerides.42

\textit{P. ginseng} may prevent insulin resistance and change gene expression in type 2 diabetes.48

There is conflicting evidence on whether or not \textit{P. ginseng} has estrogenic activity.12,14–20

The protein isolate panaxagin may have anti-viral and anti-fungal activity where it appears to inhibit human immunodeficiency virus reverse transcriptase and ribosomal activity of some fungi.33

\textit{P. ginseng} may mildly inhibit cytochrome P450.49

\textit{P. ginseng} increases penile vibratory threshold and reduces the amplitude of penile somatosensory evoked potentials.

\textbf{Drug interactions}

- Anti-coagulant/anti-platelet agents50,51
- Anti-diabetic drugs4
- Anti-psychotic drugs52
- Caffeine53
- Furosemide54
- Immunosuppressants11
- Insulin53
- Monoamine oxidase inhibitors35,56
- Stimulant drugs57
- Warfarin (Coumadin)50,51,58
- Drugs metabolized by cytochrome P450 enzymes49

\textbf{Part used}

- Root1
References

202 Herbal medicines

LEMON BALM
Melissa officinalis

Synonyms/common names/related compounds
Balm, cure-all, dropsy plant, honey plant, melissa, Melissae folium, melissenblatt, sweet balm, sweet mary

Indications

Lemon balm extract

<table>
<thead>
<tr>
<th>Indication</th>
<th>Evidence grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild to moderate Alzheimer disease:</td>
<td>B1</td>
</tr>
<tr>
<td>Cold sores (herpes labialis)</td>
<td>B2</td>
</tr>
<tr>
<td>Sleep quality and quantity</td>
<td>B2</td>
</tr>
<tr>
<td>Dyspepsia (with bitter candy tuft, chamomile flower, peppermint leaves,</td>
<td>B2</td>
</tr>
<tr>
<td>caraway fruit, licorice root, angelica root, celandine herbs, and milk</td>
<td></td>
</tr>
<tr>
<td>thistle fruit)</td>
<td></td>
</tr>
<tr>
<td>Chronic colitis (with Taraxacum officinale, Hypericum perforatum,</td>
<td>C</td>
</tr>
<tr>
<td>Calendula officinalis, and Foeniculum vulgare)</td>
<td></td>
</tr>
<tr>
<td>Anti-ulcerogenic</td>
<td>E</td>
</tr>
</tbody>
</table>

Oil

<table>
<thead>
<tr>
<th>Indication</th>
<th>Evidence grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severe dementia</td>
<td>B1</td>
</tr>
</tbody>
</table>

Pregnancy

<table>
<thead>
<tr>
<th>Indication</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emmenagogue</td>
<td>4</td>
</tr>
<tr>
<td>Hormonal changes</td>
<td>4</td>
</tr>
</tbody>
</table>

A review article on the potential value of plants as sources of anti-fertility agents reported that lemon balm was an emmenagogue. A herbal toxicology and drug interaction compendium reported that lemon balm causes hormonal changes.

<table>
<thead>
<tr>
<th>Indication</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-gonadotrophic activity</td>
<td>4</td>
</tr>
</tbody>
</table>

A review article on the potential value of plants as sources of anti-fertility agents reported that lemon balm had anti-gonadotrophic activity in rats.
Lactation

Hormonal changes: Evidence level 4

A herbal toxicology and drug interaction compendium reported that lemon balm causes hormonal changes. There are no reports in the scientific literature of lemon balm being either safe or contraindicated during lactation.

Constituents
- Monoterpenoid aldehydes: citronellal, neral, and geranial
- Polyphenolic compounds: rosmarinic acid
- Flavonoids: luteolin 3’-O-β-D-glucuronide

Pharmacology
- Lemon balm induces a calming effect and reduces alertness.
- In vitro lemon balm extracts have cholinergic binding properties and may effectively ameliorate the cognitive deficits associated with Alzheimer disease.
- Lemon balm may have nicotinic and muscarinic binding properties.
- The terpenes in the essential oil of lemon balm are rapidly absorbed through the lungs and cross the blood–brain barrier, and may have cholinergic activity or act on γ-aminobutyric acid receptor.
- Lemon balm was shown to have anti-herpes simplex 1 activity and antiviral effects.
- Lemon balm was shown to have anti-human immunodeficiency virus-1 activity.
- Rosmarinic acid may have anti-thyroid effects.
- Rosmarinic acid may have anti-inflammatory activity through its inhibitory effects on complement C3-convertase.
- Lemon balm was shown to have protective effects against enzyme-dependent and -independent lipid peroxidation.

Drug interactions
- Barbiturates
- Sedative drugs
- Thyroid hormone

Parts used
- Leaf, oil

References

22. Dr. Duke’s Phytochemical and Ethnobotanical Databases. www.ars-grin.gov/cgi-bin/duke/farmacy.2pl
LICORICE
Glycyrrhiza glabra

Synonyms/common names/related compounds
Alcacuz, alcauz, Chinese licorice, gan cao, gan zao, glycyrrhiza, G. glabra typica, G. glabra violacea, isoflavone, isoflavones, jethi-madh, mulhathi, lakritze, licorice root, Liquiritiae radix, liquorizia, liquorice, orozuz, phytoestrogen, reglisse, regliz, Russian licorice, Spanish licorice, subholz, sweet root, yashti-madhu, yashti-madh, yashti-madhuka

Indications

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indigestion (with bitter candy, chamomile, peppermint, caraway, lemon balm, angelica, celandine, milk thistle)</td>
<td>B2</td>
</tr>
<tr>
<td>Idiopathic thrombocytopenic purpura (with corticosteroids)</td>
<td>B2</td>
</tr>
<tr>
<td>Hepatitis C:</td>
<td>B2</td>
</tr>
<tr>
<td>Familial Mediterranean fever (with andrographis, Siberian ginseng, schizandra)</td>
<td>B2</td>
</tr>
<tr>
<td>Hemophiliacs with HIV-1:</td>
<td>C</td>
</tr>
<tr>
<td>Viral hepatitis:</td>
<td>C</td>
</tr>
<tr>
<td>Viral hepatitis (with interferon):</td>
<td>C</td>
</tr>
<tr>
<td>Oral lichen planus:</td>
<td>C</td>
</tr>
<tr>
<td>Dental plaque:</td>
<td>C</td>
</tr>
<tr>
<td>Hyperkalemia:</td>
<td>C</td>
</tr>
<tr>
<td>Herpes zoster:</td>
<td>D</td>
</tr>
<tr>
<td>Psoriasis (with Tripterygium wilfordii and erythromycia):</td>
<td>D</td>
</tr>
<tr>
<td>Deglycyrrhizinated licorice (DGL)</td>
<td></td>
</tr>
<tr>
<td>Aphthous ulcers:</td>
<td>C</td>
</tr>
<tr>
<td>Gastric and duodenal ulcers:</td>
<td>E</td>
</tr>
</tbody>
</table>
Gastric mucosal damage by acetyl salicylic acid (aspirin): Evidence grade E

Pregnancy

<table>
<thead>
<tr>
<th>Statement</th>
<th>Evidence Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Likely to be born before 38 weeks’ gestation:</td>
<td>Evidence level 1b</td>
</tr>
<tr>
<td>Risk of pre-term pregnancy (before 37 weeks):</td>
<td>Evidence level 1b</td>
</tr>
<tr>
<td>Does not affect birthweight:</td>
<td>Evidence level 1b</td>
</tr>
<tr>
<td>Does not affect maternal blood pressure:</td>
<td>Evidence level 1b</td>
</tr>
</tbody>
</table>

A study of 1049 Finnish women found babies with heavy exposure to glycyrrhizin were significantly more likely to be born earlier. The odds ratio for being born before 38 weeks’ gestation was 2.5. It was also reported that heavy glycyrrhizin exposure during pregnancy did not significantly affect birthweight or maternal blood pressure. Another study of 95 women found that heavy consumption of glycyrrhizin was associated with a more than twofold increased risk of pre-term (<37 weeks) delivery.

<table>
<thead>
<tr>
<th>Statement</th>
<th>Evidence Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimal risk:</td>
<td>Evidence level 1c</td>
</tr>
</tbody>
</table>

A study published 110 case reports on the use of glycyrrhizin injections for the treatment of viral hepatitis during pregnancy. No adverse effects were reported.

<table>
<thead>
<tr>
<th>Statement</th>
<th>Evidence Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estrogenic:</td>
<td>Evidence level 3</td>
</tr>
</tbody>
</table>

The constituent glabridin was shown to have varying degrees of estrogen receptor agonism in different tests and demonstrated growth-inhibitory actions on human breast cancer cells. A review article on the potential value of plants as sources of anti-fertility agents reported that licorice has estrogenic activity.

<table>
<thead>
<tr>
<th>Statement</th>
<th>Evidence Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potential abortifacient:</td>
<td>Evidence level 4</td>
</tr>
<tr>
<td>Emmenagogue:</td>
<td>Evidence level 4</td>
</tr>
<tr>
<td>Uterine stimulant:</td>
<td>Evidence level 4</td>
</tr>
</tbody>
</table>

A review article on the potential value of plants as sources of anti-fertility agents reported that licorice was a potential abortifacient, emmenagogue, and uterine stimulant.

<table>
<thead>
<tr>
<th>Statement</th>
<th>Evidence Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Causes high prolactin and estrogen levels:</td>
<td>Evidence level 4</td>
</tr>
</tbody>
</table>

An evidence-based herbal monograph reported that licorice causes high prolactin levels and high estrogen levels in women.
DGL

Unknown: Evidence level 5

It is unknown if the removal of the glycyrrhizin constituent in licorice makes DGL safe during pregnancy. There are no reports in the literature of DGL being either safe or contraindicated during pregnancy.

Lactation

Hormonal effects: Evidence level 4

An evidence-based herbal monograph reported that licorice causes high prolactin levels and high estrogen levels in women. There are no reports in the scientific literature of licorice being either safe or contraindicated during lactation.

DGL

Unknown: Evidence level 5

It is unknown if the removal of the glycyrrhizin constituent in licorice makes DGL safe during lactation. There are no reports in the scientific literature of DGL being either safe or contraindicated during lactation.

Contraindications

Long-term use
Hypertension
Hypokalemia
Cardiovascular disease
Diabetes
Liver disorders (cholestasis, chronic hepatitis, cirrhosis)
Severe kidney insufficiency

Constituents

● Triterpenoid saponins: glycyrrhizin (glycyrrhizic acid), glycyrrhetinic acid (18-β-glycyrrhetinic acid)
● Flavonoids: liquiritin, chalcones, and isoflavonoids
● Sterols

Toxicity

No significant changes were observed in rats fed 100–1000 mg/kg per day for 1 year (intragastric route).

Glycyrrhizin

Long-term administration of glycyrrhizin did not induce tumors in mice.
Glycyrrhetinic acid
- In rats, oral consumption of glycyrrhetinic acid caused an increase in right atrial pressure and thickening of the pulmonary vessels, suggesting pulmonary hypertension.44
- Patients with previous breast cancer given doses of 0.02–0.03 mmol/kg of glycyrrhetinic acid experienced hypertension or hypokalemia, which required dose reduction or discontinuance.45

Pharmacology
- Glycyrrhizin contributes to the mineralocorticoid effects of licorice, such as hypertension and hypokalemia, by binding directly to mineralocorticoid receptors and by decreasing the conversion of active cortisol to inactive cortisone.46–50
- The constituents glycyrrhizin and glycyrrhetinic acid inhibit the enzyme 11-β-hydroxysteroid dehydrogenase, which is located in the aldosterone receptor cells of the cortical collecting duct.46,51
- Licorice blocks the metabolism of prostaglandins E and F2 α, which may have a preventive effect on nonsteroidal anti-inflammatory drug-induced damage to the gastrointestinal mucosa.52
- Licorice appears to have anti-estrogenic and estrogenic activity, where the constituent glabridin has estrogenic activity at low concentrations and anti-estrogenic activity at high concentrations.28
- Licorice does not appear to stimulate the growth of estrogen-dependent breast cancer cells.53
- Intravenous preparations of glycyrrhizin and glycyrrhizic acid were shown to have activity against hepatitis B and C in humans.13,14,54
- Licorice may decrease testosterone production in young healthy men.55
- Licorice may reduce body fat but the accompanying fluid retention offsets any change in body weight.56

DGL
DGL may accelerate the healing of gastric and duodenal ulcer disease.21–23

Drug interactions
Anti-hypertensive drugs57
Corticosteroids52,58
Drugs metabolized by cytochrome P450 3A4 and P450 2B659,60
Digoxin52
Potassium-depleting diuretic drugs58
Estrogens51
Ethacrynic acid61
Furosemide61
Insulin52

Part used
Root1
212 Herbal medicines

References
214 *Herbal medicines*

MILK THISTLE
Silybum marianum

Synonyms/common names/related substances
Holy thistle, Lady’s thistle, legalon, *Cardui mariae fructus*, *Cardui mariae herba*, marian thistle, mariendistel, Mary thistle, Our Lady’s thistle, St Mary thistle, silybin, Silybum, silymarin

Indications

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcoholic liver cirrhosis:2–6</td>
<td>A</td>
</tr>
<tr>
<td>Liver cirrhosis mortality:2,4</td>
<td>A</td>
</tr>
<tr>
<td>Non-alcoholic liver cirrhosis:4,7</td>
<td>B1</td>
</tr>
<tr>
<td>Chronic viral hepatitis C:8,9</td>
<td>B1</td>
</tr>
<tr>
<td>Acute viral hepatitis:10</td>
<td>B1</td>
</tr>
<tr>
<td>Diabetes mellitus-related cirrhosis:2,11,12</td>
<td>B1</td>
</tr>
<tr>
<td>Drug-induced liver toxicity:13</td>
<td>B2</td>
</tr>
<tr>
<td>Dyspepsia (with bitter candy tuft, chamomile flower, peppermint leaves, caraway fruit, licorice root, angelica root, celandine herbs, and lemon balm):8</td>
<td>B2</td>
</tr>
<tr>
<td>Toxicity-induced liver disease:14,15</td>
<td>C</td>
</tr>
<tr>
<td>Type 2 diabetes mellitus:16</td>
<td>C</td>
</tr>
<tr>
<td>Amanita phalloides mushroom poisoning:2,17,18</td>
<td>D</td>
</tr>
<tr>
<td>Primarily fatty degeneration of the liver:19</td>
<td>D</td>
</tr>
<tr>
<td>Hepatocellular carcinoma:20</td>
<td>E</td>
</tr>
<tr>
<td>Cancer prevention:21,22</td>
<td>E</td>
</tr>
</tbody>
</table>

Pregnancy

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimal risk:23–25</td>
<td>1a</td>
</tr>
</tbody>
</table>

A 60-day trial of silymarin 400 mg daily was conducted in pregnant women and adults with ‘minor liver insufficiencies’.23 No adverse effects were reported in the mothers and offspring.23
Intrahepatic cholestasis of pregnancy: Evidence level 1c

When administered to a small group of patients over 15 days, milk thistle was shown to attenuate pruritus in pregnant women with intrahepatic cholestasis of pregnancy. No adverse effects were reported with the use of milk thistle.

Emmenagogue: Evidence level 4

Uterine stimulant constituent: Evidence level 4

A review article on the potential value of plants as sources of anti-fertility agents reported that milk thistle was an emmenagogue and that it contains the uterine stimulant constituent tyramine.

Lactation

Unknown: Evidence level 5

Milk thistle was not reported in the scientific literature as being contraindicated or safe during lactation.

Constituents

Flavonolignans: silybin A and B, silydistin, silydianin, silymarin, silibinin

Pharmacology

- Silybin, a milk thistle constituent, was shown to stimulate RNA polymerase A and DNA synthesis. This stimulation increases the synthesis of ribosome proteins, stimulates cell development and thereby increases the regenerative capacity of the liver.
- Regular consumption of standardized preparations of milk thistle were shown to control the liver enzymes aspartate aminotransferase (AST) and alanine aminotransferase (ALT).
- Silymarin, the active constituent in milk thistle, may competitively bind some toxins and act as a free radical scavenger.
- Silymarin may increase the hepatic contents of glutathione (both oxidized and reduced).
- Silymarin may increase the enzyme superoxidase dismutase (SOD).
- Silymarin may regulate cell membrane permeability, inhibit the 5-lipoxygenase pathway, scavenge for reactive oxygen species (ROS) of the R-OH type and effect DNA-expression.
- Silibinin, a constituent of milk thistle, was shown to significantly inhibit cell growth and DNA synthesis of different prostate, breast and cervical human carcinoma cells.
- Silibinin treatment significantly decreased both intracellular and secreted forms of prostate specific antigen (PSA) and inhibited cell growth via a G1 arrest in cell cycle progression.
Milk thistle may affect cytochrome P450 2C9 (CYP2C9) and P450 3A4 (CYP3A4).40,41

Drug interactions

Estrogens36

Glucuronidated drugs37,38

Drugs metabolized by cytochrome P450 2C9 (CYP2C9) and P450 3A4 (CYP3A4)39,40

Part used28

Seeds

References

218 **Herbal medicines**

MONKSHOOD
Aconitum napellus

Synonyms and common names
Wolfbane, aconiti tuber, autumn monkshood, blue monkshood root, chuan-wu, monkshood tuber, friar’s cap, mousebane, aconite

Indications

<table>
<thead>
<tr>
<th>Description</th>
<th>Evidence Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analgesic</td>
<td>E</td>
</tr>
<tr>
<td>Neuralgia</td>
<td>E</td>
</tr>
<tr>
<td>Ovarian cysts (as part of the Turska formula (Aconite, Bryonia, Phytolacca and Gelsemium))</td>
<td>F</td>
</tr>
</tbody>
</table>

Pregnancy

Possible central nervous system effects

An animal study was conducted on the effects of an alkaloid similar to aconitine, i.e. methyllycaconitine (derived from Delphinium brownii). The researchers reported that methyllycaconitine was a potent antagonist of N-acetylcholine receptors in the hippocampal neurons of rats.

Anovulatory effects

A review article on the potential value of plants as sources of anti-fertility agents reported that aconite had anovulatory effects in vitro.

Lactation

Possible central nervous system effects

An animal study was conducted on the effects of an alkaloid similar to aconitine, i.e. methyllycaconitine (derived from D. brownii). The researchers reported that methyllycaconitine was a potent antagonist of N-acetylcholine receptors in the hippocampal neurons of rats.

Unknown

Despite the apparent toxicity of this herb, there were no reports in the scientific literature of monkshood being either safe or contraindicated during lactation.
Constituents

- Diterpene alkaloids: aconitine (acetylbenzoylaconine), picraconitine (benzoylaconine), aconine, mesaconitine, napelline (isoaconitine, pseudoaconitine), hypaconitine, 3-acetylaconitine, lappaconitine, benzaconine
- Diterpenoid-ester alkaloids

Toxicity

- Monkshood is one of the most poisonous plants known. There are a number of case reports of accidental poisonings.
- Lethal dose: 1 g (powdered herb), 5 mL (tincture), 3–6 mg of aconitine

Pharmacology

- Monkshood alkaloids have anti-nociceptive effects and can be useful analgesics.
- Monkshood alkaloids have muscarinic effects where they stimulate the parasympathetic nervous system, causing bradycardia and hypotension.
- The constituent lappaconitine is an antagonist of both sodium and calcium channels, thereby causing anti-arrhythmia and bradycardia-like effects.

Part used

Whole herb

References

222 Herbal medicines

OREGON GRAPE
Berberis aquifolium

Synonyms/common names/related substances
Blue barberry, creeping barberry, holly barberry, holly-leaved berberis, holly mahonia, mountain-grape, Oregon barberry, Oregon grape-holly, scraperoot, trailing mahonia, water-holly

Indications

<table>
<thead>
<tr>
<th>Indication</th>
<th>Evidence grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloroquine-resistant malaria (with pyrimethamine)</td>
<td>B1</td>
</tr>
<tr>
<td>Infectious diarrhea</td>
<td>B1</td>
</tr>
<tr>
<td>Trachoma (Chlamydia trachomatis eye infection)</td>
<td>B2</td>
</tr>
<tr>
<td>Psoriasis (topical)</td>
<td>C</td>
</tr>
<tr>
<td>Congestive heart failure</td>
<td>C</td>
</tr>
<tr>
<td>Upper respiratory tract infections</td>
<td>E</td>
</tr>
<tr>
<td>Anti-Helicobacter pylori</td>
<td>E</td>
</tr>
<tr>
<td>Cancer prevention</td>
<td>E</td>
</tr>
</tbody>
</table>

Pregnancy

<table>
<thead>
<tr>
<th>Indication</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>May cause newborn jaundice (kernicterus)</td>
<td>3</td>
</tr>
</tbody>
</table>

In rats, berberine displaces bilirubin bound to albumin. Berberine (10–20 μg/g) was administered intraperitoneally to adult rats on a daily basis for 1 week. After 1 week, a significant decrease in mean bilirubin serum protein binding was observed, due to an in vivo displacement effect by berberine. A persistent elevation in serum concentrations of unbound and total bilirubin was also observed.

<table>
<thead>
<tr>
<th>Indication</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uterine stimulant</td>
<td>4</td>
</tr>
</tbody>
</table>

A review article on the potential value of plants as sources of anti-fertility agents reported that Oregon grape contains the uterine stimulant berberine.

Lactation

<table>
<thead>
<tr>
<th>Indication</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>May cause or aggravate newborn jaundice (kernicterus)</td>
<td>3</td>
</tr>
</tbody>
</table>
In rats, berberine displaces bilirubin bound to albumin. Berberine (10–20 μg/g) was administered intraperitoneally to adult rats on a daily basis for 1 week. After 1 week, a significant decrease in mean bilirubin serum protein binding was observed, due to an in vivo displacement effect by berberine. A persistent elevation in serum concentrations of unbound and total bilirubin was also observed.

Contraindication
Newborn jaundice (kernicterus)

Toxic constituents
Isoquinoline alkaloids: oxyacanthine, berbamine, berberine

Toxicity
LD$_{50}$ of berberine in humans: 27.5 mg/kg

Pharmacology
- Berberine was found to displace bilirubin bound to albumin in vitro. Berberine was found to be about 10 times superior to phenylbutazone, a known potent displacer of bilirubin, and about 100 times superior to papaverine, a berberine-type alkaloid.
- The constituents berberine and oxyacanthine have been shown to have antibacterial activity.
- Berberine has been shown to have amebicidal, anti-parasitic (trypanocidal) and anti-fungal activity.
- Berberine and β-hydrastine were shown to have anti- Helicobacter pylori activity in vitro.
- In low doses, berberine may act as a cardiac and respiratory stimulant, whereas in high doses it may act as a cardiac and respiratory depressant.
- Berberine was shown to have anti-platelet activity.
- Berberine, oxyacanthine, and barbaminewereshowntohaveanti-inflammatory effects.
- Berberine was found to have antidiarrheal effects.
- Berberine was found to inhibit parathyroid hormone-stimulated bone resorption, inhibit osteoclastic bone resorption and prevent a decrease in bone mineral density of the lumbar vertebrae.

Drug interactions
Anticoagulant drugs
Highly protein-bound drugs

Parts used
Root and rhizome
References

Herbal medicines

PARSLEY

Petroselinum crispum, P. sativum

Synonyms/common names/related compounds
Common parsley, garden parsley, hamburg parsley, persely, persil, petersylinge, Petroselini herba, Petrosilni radix, rock parsley

Indications

<table>
<thead>
<tr>
<th>Activity</th>
<th>Evidence Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antioxidant activity</td>
<td>B2</td>
</tr>
<tr>
<td>Abortifacient</td>
<td>C</td>
</tr>
</tbody>
</table>

Pregnancy

Whole plant

<table>
<thead>
<tr>
<th>Activity</th>
<th>Evidence Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abortifacient</td>
<td>1b</td>
</tr>
</tbody>
</table>

A descriptive retrospective survey was conducted on the calls received by the Montevideo Poison Center between 1986 and 1999 concerning the ingestion of herbal infusions with abortive intent. Parsley was reported as one of the most frequently used herbs for self-induced abortions. The authors also reported that abortion occurred in a number of cases after the ingestion of parsley. Also, there is a 1973 case report of abortion following the ingestion of parsley and naphthalene. A review article on the potential value of plants as sources of anti-fertility agents reported that parsley was a potential abortifacient.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Evidence Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emmenagogue</td>
<td>4</td>
</tr>
<tr>
<td>Uterine stimulant constituent</td>
<td>4</td>
</tr>
<tr>
<td>Estrogenic</td>
<td>4</td>
</tr>
</tbody>
</table>

A review article on the potential value of plants as sources of anti-fertility agents reported that parsley was an emmenagogue, uterine stimulant and that its constituent, apiol, was a uterine stimulant. This review article also reported that parsley has estrogenic activity.

Aerial parts

<table>
<thead>
<tr>
<th>Activity</th>
<th>Evidence Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estrogenic activity</td>
<td>3</td>
</tr>
</tbody>
</table>

Extracts from the aerial parts of parsley showed potent estrogenic activity, which was equal to that of isoflavone glycosides from soybean. The methanolic extract of parsley, apiin, and apigenin restored the uterus weight in ovariectomized mice.
when orally administered for consecutive 7 days. A review article on the potential value of plants as sources of anti-fertility agents reported that parsley has estrogenic activity.

Myristicin

| Potentially mutagenic: | Evidence level 3 |

Liver DNA adducts were detected in fetal liver when pregnant mice were intubated with myristicin.

Lactation

Whole plant

| Unknown: | Evidence level 5 |

There are no reports in the scientific literature of parsley being either safe or contraindicated during lactation.

Aerial parts

| Estrogenic activity: | Evidence level 3 |

Extracts from the aerial parts of parsley showed potent estrogenic activity.

Contraindications

Kidney inflammation

Constituents

- Leaf and root: volatile oils (apiole, myristicin, furanocoumarins (psoralens)), flavone glycosides (apiin, apigenin), carotene, vitamin B₁, vitamin B₂, vitamin C, and vitamin K
- Seed: volatile oils (apiole, myristicin, furanocoumarins (psoralens))

Toxicity

LD₅₀ (oral) of volatile oil: 1.52–3.96 g/kg

Pharmacology

Leaf and root

- Parsley has been reported as having anti-flatulent, antispasmodic, anti-rheumatic, expectorant, antimicrobial and aquaretic (increased urine volume without sodium loss) effects.
● Parsley irritates the kidney epithelium, which increases renal blood flow and glomerular filtration rate and consequently increases urine output.10

● The constituent apiol may stimulate menstrual flow and smooth muscle contractibility in the bladder and intestines.14

● The constituents apiol and myristicin may have aquaretic and uterine stimulant effects.10

Seed

● Parsley seed may stimulate appetite and improve digestion due to its volatile oil content.15

● The volatile oil from the seed has mild aquaretic and laxative properties.15,16

● Parsley seed causes a laxative effect by inhibiting the Na–K pump and by stimulating the Na\textsubscript{K}Cl\textsubscript{2} transporter.16

● Parsley seed oil may stimulate hepatic regeneration.11

Drug interactions1

Leaf and root

Anticoagulant/antiplatelet drugs17

Aspirin18

Diuretics10

Monoamine oxidase inhibitors11

Seed

Diuretics10

Monoamine oxidase inhibitors11

Parts used1

Leaf, root, and seed

References

7. Yoshikawa M, Uemura T, Shimoda H et al. Medicinal foodstuffs. XVIII. Phytoestrogens from the aerial part of Petroselinum crispum Mill. (Parsley) and structures
230 Herbal medicines

PASSION FLOWER
Passiflora incarnata

Synonyms/common names/related compounds
Apricot vine, corona de cristo, fleischfarbige, fleur de la passion, flor de passion, madre selva, maracuja, maypop, maypop passion flower, passiflora, Passiflorae herba, passiflore, passiflorina, passionflower, passion vine, passionaria, passionsblume, passionflower herb, passionsblumenkraut, purple passion flower, water lemon, wild passion flower

Indications

<table>
<thead>
<tr>
<th>Indication</th>
<th>Evidence grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anxiety associated with adjustment disorders (with hawthorn, black horehound, valerian, cola nut and guarana):</td>
<td>B1</td>
</tr>
<tr>
<td>Anxiety:</td>
<td>B2</td>
</tr>
<tr>
<td>Opiate withdrawal (with clonidine):</td>
<td>B2</td>
</tr>
<tr>
<td>Increases exercise capacity in congestive heart failure (with hawthorn):</td>
<td>B2</td>
</tr>
</tbody>
</table>

Pregnancy

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genotoxic constituents:</td>
<td>3</td>
</tr>
<tr>
<td>Mutagenic constituents:</td>
<td>3</td>
</tr>
</tbody>
</table>

Both harman and harmine, constituents of passion flower, increased aberrant cell frequency and induced DNA damage in vitro using single-cell gel assay. The authors reported that harman and harmine are genotoxic and mutagenic. Harmine was found to be more cytotoxic than harman.

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uterine stimulant:</td>
<td>4</td>
</tr>
</tbody>
</table>

A review article on the potential value of plants as sources of anti-fertility agents reported that passion flower was a uterine stimulant.

Lactation

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genotoxic constituents:</td>
<td>3</td>
</tr>
<tr>
<td>Mutagenic constituents:</td>
<td>3</td>
</tr>
</tbody>
</table>
Both harman and harmine, constituents of passion flower, increased aberrant cell frequency and induced DNA damage in vitro using single-cell gel assay. The authors reported that harman and harmine are genotoxic and mutagenic. Harmine was found to be more cytotoxic than harman.

Unknown: Evidence level 5

There are no reports in the scientific literature of passion flower being either safe or contraindicated during lactation.

Constituents
- Flavonoids: apigenin, luteolin, quercetin, kaempferol, vitexin
- β-Caroline alkaloids: harmine, harmaline, harmalol, harman, harmin
- Cyanogenic glycoside: gynocardine

Toxicity
LD₅₀ of the closely related species *P. alata* was 456 mg/kg.

Pharmacology
- Passion flower has been shown to have sedative, hypnotic, anxiolytic, anodyne and anti-spasmodic effects.
- The alkaloid constituents have central nervous system stimulant activity via a monoamine oxidase mechanism.
- The constituent apigenin binds to central benzodiazepine receptors, thereby causing anxiolytic effects without impairing memory or motor skills.
- Passion flower may reduce amphetamine-induced hypermotility, aggressiveness, and restlessness, and may raise the pain threshold.
- Passion flower may have anti-bacterial and antifungal activity.
- The constituents harman and harmine are genotoxic and mutagenic, where harmine was found to be more cytotoxic than harman.

Drug interactions
Barbiturates
Central nervous system depressants
Monoamine oxidase inhibitors

Parts used
Above ground parts

References
PENNYROYAL
Hedeoma pulegioides, Mentha pulegium

Synonyms/common names/related compounds
American pennyroyal, European pennyroyal, lurk-in-the-ditch, mosquito plant, penny royal, pilioleria, pudding grass, pulegium, run-by-the-ground, squaw balm, squawmint, stinking balm, tickweed

Indications

<table>
<thead>
<tr>
<th>Indication</th>
<th>Evidence grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potential abortifacient:2–4</td>
<td></td>
</tr>
<tr>
<td>Emmenagogue:5</td>
<td></td>
</tr>
</tbody>
</table>

Pregnancy

<table>
<thead>
<tr>
<th>Indication</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potential abortifacient:2–4,6</td>
<td></td>
</tr>
<tr>
<td>Emmenagogue:5,6,10</td>
<td></td>
</tr>
</tbody>
</table>

Pennyroyal has a long tradition of use as an abortifacient.5–8 In a 1904 case report, a woman ingested one-half ounce of pennyroyal oil and expelled a dead fetus 4 days later.2 In a 1955 case report, a 3-month pregnant woman ingested two bottles of an unknown amount of pennyroyal with the intention of inducing an abortion; several hours later, the fetus was aborted. A review article on the potential value of plants as sources of anti-fertility agents also reported that pennyroyal was an abortifacient.6

In two case reports from 1961 and 1985, however, two pregnant women consumed pennyroyal in combination with other herbs and this did not lead to an abortion.5,9 One woman experienced a severe psychotic episode and seizures, while the newborn of the other women was born with mild hyperbilirubinemia.5,9

Emmenagogue:5,6,10

In a 1996 case report, a 24-year-old woman drank glasses of pennyroyal tea with the intention of inducing menstruation.5 After repeated intake of pennyroyal tea, the women experienced nausea, severe abdominal cramping for 4 days and eventually menses began.5 In a 1983 case report, a 20-year-old woman took pennyroyal leaves and oil to induce menstruation.10 The woman experienced some menstrual spotting from taking pennyroyal leaves and within hours of taking the oil, she was euphoric, vomited, and lost consciousness.10 The woman was admitted to the hospital, received supportive treatment and recovered fully.10 A review article on the potential value of plants as sources of anti-fertility agents also reported that pennyroyal was an emmenagogue.6

Hepatotoxicity:5,11

Neurotoxicity:12
Nephrotoxic: Evidence level 2
Pneumotoxic: Evidence level 2

Human and animal case reports found that pennyroyal use reduced liver glutathione levels and is hepatotoxic. Neurologic injury developed in two infants after ingestion of pennyroyal tea. A human case report also found that pennyroyal use may injure the kidneys and the lungs.

Carachipita

Abortifacient: Evidence level 2
Multi-system organ failure: Evidence level 2
Death: Evidence level 2

The South American over-the-counter product called Carachipita, which contains pennyroyal, yerba de la perdiz (Margiricarpus pinnatus), oregano (Origanum vulgare), and guaycuri (Statice brasiliensis) was found to induce abortion, multi-system organ failure and, in one case, death of the mother.

Lactation

Hepatotoxicity: Evidence level 2
Neurotoxicity: Evidence level 2
Nephrotoxic: Evidence level 2
Pneumotoxic: Evidence level 2

Human and animal case reports have documented liver, nerve, kidney and lung toxicity associated with the use of pennyroyal. It is unclear if the toxic constituents of pennyroyal cross into breast milk.

Carachipita

Multi-system organ failure: Evidence level 2
Death: Evidence level 2

The South American over-the-counter product called Carachipita, which contains pennyroyal, yerba de la perdiz (Margiricarpus pinnatus), oregano (Origanum vulgare), and guaycuri (Statice brasiliensis) was found to induce multi-system organ failure and, in one case, death of the mother.
Contraindications
Pregnancy2,3
Lactation5,11,12
Pre-existing kidney, liver, nerve or lung disease5,15
Children12

Caution
Alcoholism16
Acetaminophen use16

Constituents
- Volatile oils:14 hedeomal, pulegone, alpha-pinene, beta-pinene, limonene, 3-octanone, \textit{p}-cymene, 3-octylacetate, 3-octanol, 1-octen-3-ol, 3-methylcyclohexanone, menthone, piperitenone
- Tannins14
- Paraffins14

Toxicity

\textbf{Essential oil}
- LD\textsubscript{50} in rats (oral):16,17 0.4 g/kg
- LD\textsubscript{50} in rabbits (dermal):17 4.2 g/kg

\textbf{Pulegone}
- LD\textsubscript{50} in rats (oral):18 0.47 g/kg
- LD\textsubscript{50} in rabbits (dermal):18 3.09 g/kg

Pharmacology
- The volatile oil pulegone and its metabolites, menthofuran and methofuran’s metabolites, may cause hepatotoxicity, neurotoxicity, and bronchiolar epithelial cell destruction.5,13,19
- Metabolites of pulegone deplete hepatic glutathione levels.5,12,13 This leads to metabolite accumulation and direct cellular damage similar to acetaminophen (paracetamol) toxicity.12
- Pulegone is isomerized to isopulegone, which can be toxic to the lungs and liver.20
- Excretion of the essential oil irritates the kidneys and the bladder, and reflexively excites uterine contractions.16

Drug interactions14
Acetaminophen21,22
Antihistamines23
Drugs metabolized by cytochrome P450 enzymes13,24-27
Oral hypoglycemic drugs
Hepatotoxic drugs

Parts used
Aerial parts, oil

References
20. MICROMEDEX. Micromedex Healthcare Series. Englewood, CO: MICROMED EX.
PEPPERMINT
Mentha piperita

Synonyms/common names/related compounds
Brandy mint, lamb mint, Menthae piperitae folium, Menthae piperitae Aetheroleum, menthe poivree

Indications

Oil

Dyspepsia (with caraway oil):2–4 Evidence grade B1
Tension headaches:5,6 Evidence grade B1
Irritable bowel syndrome:7–10 Evidence grade B2
Post-operative nausea:11 Evidence grade B2
Dyspepsia (with bitter candy tuft, chamomile flower, lemon balm, caraway fruit, licorice root, angelica root, celandine herbs and milk thistle fruit):8 Evidence grade B2
Common cold (with juniper oil, cajeput oil, eucalyptus oil and methylquinolinium oil):2 Evidence grade C
Barium enema-related colonic spasm:12–14 Evidence grade C

Pregnancy

Used to treat pregnancy-induced nausea:15 Evidence level 1c
Safety unkown:15 Evidence level 1c

A qualitative study of self-care in pregnancy, birth and lactation was conducted on 27 women in British Columbia (Canada) where 20 women (74%) experienced pregnancy-induced nausea.15 The authors reported that peppermint was one of the remedies used to treat nausea, but that there was no information on safety during pregnancy.15

Possibly unsafe:16 Evidence level 4

A literature review reported that seven of the 300 nonmedical sources reviewed cited peppermint as unsafe during pregnancy.16 There are no reports in the scientific literature of peppermint being either safe or contraindicated during pregnancy.
Emmenagogue: Evidence level 4

- A review article on the potential value of plants as sources of anti-fertility agents also reported that peppermint was an emmenagogue.

Antigonadotrophic activity: Evidence level 4

- A review article on the potential value of plants as sources of anti-fertility agents reported that peppermint had antigonadotrophic activity in rat.

Food

- Safe: Evidence level 4

- Peppermint leaves and oil are believed to be safe during pregnancy if consumed in food amounts.

Lactation

- Unknown: Evidence level 5

- There are no reports in the scientific literature of peppermint being either safe or contraindicated during lactation.

Food

- Safe: Evidence level 4

- Peppermint leaves and oil are believed to be safe during lactation if consumed in food amounts.

Caution

- Large amounts of peppermint oil may cause interstitial nephritis and acute renal failure.

Constituents

- Essential oil: cineol, isomenthone, liminene, menthofuran, menthol, menthone, methyl acetate, terpenoids
- Leaf: caffeic acid, chlorogenic acid, luteolin, hesperidin, rutin, volatile oil, flavonoids, azulene

Toxicity

- Acute oral LD$_{50}$ of menthol: 3.3 g/kg.
- Oral administration of a spray-dried infusion of peppermint (4 g/kg) did not result in any macroscopic signs of toxicity or death in mice over a 7-day period.
Pharmacology

Leaf
Peppermint leaf has antispasmodic, antiflatulent, and bile stimulation activity.20,25

Oil
- The constituent menthol has direct antispasmodic activity on the smooth muscle of the digestive tract through calcium antagonist activity.18,26,27
- Peppermint oil increases salivation, which increases the swallowing reflex and suppresses the cough reflex.18,28
- Peppermint oil reduces bronchial secretions and has nasal decongestant activity.26
- Peppermint oil decreases gas and flatulence by relaxing the lower esophageal sphincter, thereby equalizing the intraluminal pressures between the stomach and esophagus.22,29
- Peppermint oil has antimicrobial and antiviral activity in vitro.21
- Peppermint oil may inhibit cytochrome P4503A.4,30
- The volatile oil azulene has anti-inflammatory and anti-ulcer activity.21
- Topically, peppermint oil is a counterirritant.22

Drug interactions

Leaf
- Felodipine19
- Simvastatin19
- Cyclosporine19
- 5-Fluorouracil19
Drugs metabolized by cytochrome P4503A4,30

Oil
- Antacids31
- Cyclosporine32
Drugs metabolized by cytochrome P4503A4,30
- H2-blockers31
- Proton pump inhibitors31

Parts used1
Leaf, oil

References
RASPBERRY
Rubus idaeus

Synonyms/common names/related substances
Red raspberry, Rubi idaei folium, rubus, framboise

Indications

<table>
<thead>
<tr>
<th>Indication</th>
<th>Evidence Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labor:‡,§</td>
<td>B1</td>
</tr>
</tbody>
</table>

Pregnancy

Leaf

<table>
<thead>
<tr>
<th>Benefit</th>
<th>Evidence Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimal risk:‡,§</td>
<td>1a</td>
</tr>
<tr>
<td>Shortens labor and reduces complications:‡,§</td>
<td>1a</td>
</tr>
<tr>
<td>May decrease pre- and post-term births:‡</td>
<td>1b</td>
</tr>
<tr>
<td>Less likely to receive an artificial rupture of the membranes or require a cesarean section, forceps, or vacuum birth:‡</td>
<td>1b</td>
</tr>
</tbody>
</table>

A randomized controlled trial of 192 low-risk nulliparous women was conducted where one group consumed raspberry leaf tablets (2 × 1.2 g per day) from 32 weeks’ gestation until labor and the other group received a placebo. The findings showed that raspberry leaf did not shorten the first stage of labor, but did shorten the second stage of labor and resulted in a lower rate of forceps deliveries.

A retrospective cohort study of mothers who consumed raspberry leaf products during their pregnancy versus a control group found that raspberry leaf products shortened labor with no identified side effects for the women or their babies. The findings suggested that ingestion of raspberry products might decrease the likelihood of pre- and post-term gestation. The findings also suggested that women who ingested raspberry leaf might have been less likely to receive an artificial rupture of their membranes, or require a cesarean section, forceps, or vacuum birth than the women in the control group.

Induces labor:¶

Evidence level 4

A survey of midwives in the USA found that 63% use raspberry leaf to induce labor. Raspberry leaf is part of a combination of herbal medicines that have
been traditionally used in the third trimester to prepare a woman for delivery; this preparation is called ‘mother’s cordial’ or ‘partus preparatus’. In addition to raspberry leaf, mother’s cordial may contain: squaw vine (*Mitchella ripens*), black cohosh (*Cimicifuga racemosa*), blue cohosh (*Caulophyllum thalictroides*) and false unicorn (*Chamaelirium luteum*).

<table>
<thead>
<tr>
<th>Uterine stimulant:</th>
<th>Evidence level 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estrogenic:</td>
<td>Evidence level 4</td>
</tr>
</tbody>
</table>

A herb toxicology and drug interaction compendium reported that raspberry leaves have uterine stimulant properties. A database of herbs and supplements reported that raspberry leaves may have estrogenic properties. Raspberry was not reported in the scientific literature as having estrogenic properties.

| Anti-gonadotrophic effects: | Evidence level 4 |

A review article on the potential value of plants as sources of anti-fertility agents reported that raspberry had anti-gonadotrophic effects in vitro.

Fruit

| Minimal risk: | Evidence level 4 |

Raspberry fruit is not believed to pose a risk to the mother or the baby during pregnancy.

Lactation

Leaves

| Unknown: | Evidence level 5 |

Raspberry leaves are not reported in the literature as being safe or contraindicated during lactation.

Fruit

| Minimal risk: | Evidence level 4 |

Raspberry fruit is not believed to pose a risk to the baby during lactation.

** Constituents**

Leaf

Tannins
Fruit

Anthocyanins
Phenolic compounds, ellagitannins, ellagic acid
Vitamin C

Pharmacology

Leaf
- Raspberry leaf may decrease contraction of tonic tissues and increase contraction of relaxed tissues.4,11
- In animals, raspberry leaf extract was shown to relax smooth muscle.12

Fruit
- Raspberry fruit is an antioxidant.
- Extracts of raspberry fruit were found to significantly inhibit mutagenesis on cervical and breast cancer cell lines by both direct-acting and metabolically activated carcinogens.13
- Raspberry cordial and juice were found to have anti-bacterial activity in vitro.14

Drug interactions

Metformin

Part used
Leaf

References
RED CLOVER

Trifolium pratense

Synonyms/common names/related compounds¹
Beebread, clovone, cow clover, daidzein, genistein, isoflavone, isoflavones, meadow clover, phytoestrogen, phytoestrogens, purple clover, trefoil, trifolium, wild clover

Indications

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyclic mastalgia:²</td>
<td>B2</td>
</tr>
<tr>
<td>Arterial compliance in menopause:³</td>
<td>B2</td>
</tr>
<tr>
<td>Prostate cancer:⁴,⁵</td>
<td>C</td>
</tr>
<tr>
<td>Menopausal symptoms:⁶-⁸</td>
<td>D</td>
</tr>
<tr>
<td>Osteoporosis:⁹</td>
<td>D</td>
</tr>
<tr>
<td>Hypercholesterolemia:⁹,¹⁰</td>
<td>D</td>
</tr>
<tr>
<td>Benign prostatic hyperplasia:¹¹</td>
<td>D</td>
</tr>
</tbody>
</table>

Pregnancy

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>May cause infertility:¹²</td>
<td>3</td>
</tr>
</tbody>
</table>

During 1982–1983, serious fertility disturbances were observed in a herd of cattle.¹³ The researchers determined that the cause was estrogenic stimulation from eating silage prepared almost entirely from pure red clover aftergrowth.¹³ When feeding with the red clover silage was subsequently discontinued, the disturbances ceased to occur and the cows became pregnant more easily.¹³

Estrogenic activity:¹⁴,¹⁵
Evidence level 3

In human breast cancer cells, red clover was shown to bind to intracellular estrogen receptors and to enhance estrogenic effects.¹⁴ A review article on the potential value of plants as sources of anti-fertility agents reported that red clover has estrogenic activity.¹⁵

In addition to having estrogenic activity, red clover was reported to have anti-estrogenic properties.¹⁶-²³

Anti-estrogenic activity:¹⁶-²³
Evidence level 3

Increases progesterone synthesis:²⁴
Evidence level 3
The red clover constituent biochanin A was found to increase progesterone synthesis by 40–50% in bovine granulosa cells.24

\textbf{Closes the placenta:}25 \hspace{1cm} \textbf{Evidence level 3}

In a study of human amniotic fluid following phytoestrogen ingestion, dietary phytoestrogens were found in 96.2% of second trimester amniotic fluid samples tested.25 The second trimester amniotic fluid contained quantifiable levels of formononetin, biochanin A and coumestrol, all constituents of red clover.25

\textbf{Potential abortifacient:}12 \hspace{1cm} \textbf{Evidence level 4}

An evidence-based herbal monograph database reported that red clover has been implicated as a cause of abortion in grazing livestock.12

\textbf{Food amounts}

\textbf{Minimal risk:}26 \hspace{1cm} \textbf{Evidence level 4}

Red clover was reported to be of minimal risk when consumed in food amounts.26

\textbf{Lactation}

\textbf{Estrogenic activity:}14 \hspace{1cm} \textbf{Evidence level 3}

\textbf{Increases progesterone synthesis:}24 \hspace{1cm} \textbf{Evidence level 3}

In human breast cancer cells, red clover was shown to bind to intracellular estrogen receptors and to enhance estrogenic effects.14 The red clover constituent biochanin A was found to increase progesterone synthesis by 40–50% in bovine granulosa cells.24

\textbf{Food amounts}

\textbf{Minimal risk:}26 \hspace{1cm} \textbf{Evidence level 4}

Red clover was reported to be of minimal risk when consumed in food amounts.26

\textbf{ Constituents}

Isoflavones1: biochanin A, formononetin, coumestrol

\textbf{Toxicity}

- Insufficient human data available12
- In grazing animals, red clover ingestion has been associated with cachexia, bloating, infertility, growth disorders and abortion12,27
Pharmacology

- The phytoestrogens biochanin A and formononetin, and other isoflavones are metabolized to the isoflavones genistein and daidzein, respectively, when ingested.16,28,29
- Red clover has estrogenic and anti-estrogenic properties.16–23
- Isoflavones have a higher affinity for \(\beta\)-estrogen receptors (heart, vasculature, bone, and bladder) than \(\alpha\)-estrogen receptors.16,18,30–33
- Red clover may prevent osteoporosis due to its weak estrogenic activity and to the osteoclast inhibitory activity of its metabolite genistein.16,18,32,34
- Red clover improves systemic arterial compliance, thereby preventing cardiovascular disease.3,28,32
- Red clover increases bile acid excretion and up-regulates low-density lipoprotein receptors.18,35,36
- Red clover may have anti-carcinogenic activity, particularly in reducing the risk of endometrial cancer, due to estrogenic and anti-estrogenic activity.37–40
- Red clover may have anti-coagulant effects.41
- Red clover may interfere with the cytochrome P450 CYP3A4 enzyme.42,43

Drug interactions1

- Anticoagulant/antiplatelet drugs43
- Estrogen or oral contraceptives43–45
- Tomoxifen17
- Drugs metabolized by cytochrome P450 CYP3A442,43

Part used1

Flower top

References

RYE ERGOT
Claviceps purpurea

Synonyms/common names/related substances
Cockspur rye, hornseed, mother of rye, Secale cornutum, smut rye, spurred rye

Indications

Oxytoxin-ergot preparations
Prevention of post-partum hemorrhage:2 Evidence grade A

Ergot derivatives
Dementia and age-related cognitive impairment:3,4 Evidence grade A
Migraine headaches:5,6 Evidence grade B2

Pregnancy
Potentially teratogenic:7 Evidence level 4
A literature review on ergot and ergotamine reported that ergotamine is a suspected teratogen, where clinical reports in humans have been anecdotal, but in many the malformations are consistent with vascular injury. The author reported that although epidemiologic studies have not shown any clear increase in malformations among exposed infants, this may reflect the limited exposure and toxicity when used episodically. The author recommended that ergotamine be avoided in pregnancy.7

May cause convulsive ergotism:8 Evidence level 4
A historical review was conducted on the epidemics of ‘convulsive ergotism’ between 1085 and 1927 of the Rhine Valley in Europe.8 The clinical features of convulsive ergotism are muscle twitching and spasms, changes in mental state, hallucinations, sweating, and fever lasting for several weeks. The author suggested that these symptoms represented a serotonergic overstimulation of the central nervous system, i.e. the serotonin syndrome.8

Emmenagogue:9 Evidence level 4
Oxytoxic:9 Evidence level 4
Abortifacient:9 Evidence level 4
A herbal contraindication and drug interaction compendium reported that rye ergot is an emmenagogue, uterine stimulant, abortifacient and has oxytoxic properties.9

Cabergoline (ergot derivative)

| No increased risk of malformations:10 | Evidence level 1b |
| No increase in miscarriage weight:10 | Evidence level 1b |

A follow-up study on 204 live births to assess the reproductive safety of cabergoline, an ergot derivative, showed no increase in miscarriage rate, a distribution of birthweights and sex ratio within the expected range, and no increased rate of congenital malformations.10 A further follow-up of babies, limited to 107 cases, indicated normal physical and mental development.10

Nonteratogenic:11	Evidence level 3
Does not impair fertility in males:11	Evidence level 3
Nontoxic to neonates:11	Evidence level 3

A study on the teratogenicity of cabergoline in animals concluded that cabergoline did not impair fertility in the male rat, was not teratogenic in mice and rabbits, did not affect the later phase of gestation or parturition in the rat, and was not toxic when administered directly to neonatal rats.11

C. purpurea grown on wheat

| Reproductive problems:12 | Evidence level 3 |

Ergot alkaloids from *C. purpurea* grown on wheat can cause reproductive problems in pigs.12

Lactation

Ergot derivatives

| Inhibit lactation:13,14 | Evidence level 1a |

A number of randomized clinical trials reported that ergot derivatives inhibit post-partum lactation.13,14

C. purpurea grown on wheat

| Lactational failure:12 | Evidence level 3 |

Ergot alkaloids from *C. purpurea* grown on wheat are associated with lactational failure in pigs.12
Contraindications
- Peripheral blood flow disorders
- Coronary insufficiency
- Slow gastrointestinal absorption
- Preexisting vascular pathology
- Hypertonia
- Liver disease
- Infection
- Fever

Constituents
- Indole alkaloids: ergonovine, ergocornine, ergotamine, ergocryptine, ergosine, ergocristine

Toxicity
- Toxic dose of rye ergot extract: 1.0–3.9 g
- Lethal dose of rye ergot alkaloids: 1 g (adults) and 12 mg (infants)
- Lethal dose of ergotamine tartrate: 26 mg (oral) and 0.5–1.5 mg (intramuscular)
- LD₅₀ of the rye ergot alkaloid elymoclavine: 350 mg/kg (mice) and 145 mg/kg (rats)

Pharmacology
- Through α-adrenergic blocking and antagonism of 5-hydroxytryptamine, rye ergot stimulates smooth muscles and post-ganglionic synapses of the sympathetic nerves to the uterus, bladder, heart, blood vessels, and iris.
- Ergot alkaloids produce vasoconstriction and myometrial stimulation.
- The ergot alkaloids and derivatives have central, neurohumoral and peripheral effects.
- The ergot alkaloids and derivatives bind to noradrenaline, serotonin, or dopamine receptor.
- The ergot alkaloids are serotonin agonists. Dihydroergotamine binds to serotonin receptors in the dorsal horn of the spinal cord, which is the site of neuropathological changes in convulsive ergotism.

Drug interactions
- Ergot alkaloids
- Sympathomimetics

Parts used
- Dried sclerotium grown on *Secale* (rye) kernels

References

SENNA
Cassia acutifolia, C. angustifolia, C. senna, C. lanceolata

Synonyms/common names/related compounds
Alexandrian senna, alexandrinische senna, casse, Indian senna, khartoum senna, sena alejandrina, séné d’Egypte, Sennae folium, Sennae fructus, Sennae fructus acutifoliae, Sennae fructus angustifolia, tinnevelly senna, true senna

Indications
Constipation: Evidence grade B1

Pregnancy
Minimal risk: Evidence level 3
Does not stimulate uterine motility: Evidence level 3

A study was conducted to evaluate the effects of sennosides on uterine motility in the pregnant ewe. The experiments showed that sennosides did not stimulate uterine motility in the pregnant ewe, but slightly depressed it in some ewes. Cervix motility was never influenced and pregnancy maintenance was normal in all ewes.

Minimal risk: Evidence level 4

A review article reported that senna would appear to be the stimulant laxative of choice during pregnancy.

Potential abortifacient: Evidence level 4
Emmenagogue: Evidence level 4

A toxicology and drug interaction compendium reported that senna is an emmenagogue and potential abortifacient. There are no reports in the scientific literature of senna being an emmenagogue or potential abortifacient.

Conflicting evidence
Nongenotoxic: Evidence level 4
Genotoxic: Evidence level 3

A toxicology and drug interaction compendium reported that senna is genotoxic due to its aloe-emodin content. A review study on the potential genotoxic and mutagenic properties of senna reported that human clinical trials and
animal data do not support concerns that senna laxatives pose a genotoxic risk to humans when consumed under prescribed use conditions.8,9

<table>
<thead>
<tr>
<th>Avoid during pregnancy10</th>
<th>Evidence level 4</th>
</tr>
</thead>
</table>

A compendium on herbal safety reported that senna should be avoided during pregnancy.10 There are no reports in the literature of senna being contraindicated during pregnancy.

Lactation

<table>
<thead>
<tr>
<th>Minimal risk4,11</th>
<th>Evidence level 1a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safe according to the American Association of Pediatrics (AAP)11</td>
<td>Evidence level 4</td>
</tr>
</tbody>
</table>

A clinical trial was conducted on the effectiveness of senna in the immediate postpartum period in white and black patients with matching placebo.4 The author reported that it was well tolerated with minor abdominal cramps occurring in 13\% of the patients treated with standardized senna.4 The author reported that there was no evidence to suggest that standardized senna had any effect whatsoever on a breast-fed baby if taken by the mother.4

Senna is considered compatible by the American Association of Pediatrics (AAP) for breast-feeding.11

<table>
<thead>
<tr>
<th>Low levels excreted in breast milk12,13</th>
<th>Evidence level 1</th>
</tr>
</thead>
</table>

A study was conducted on the excretion of rhein, a cathartic metabolite from sennosides, in breast milk samples of 15 post-partum women for at least 24 hours after the intake of a therapeutic dose (15 mg sennosides/day) of senna.12 The authors observed that the amount of rhein transmitted to the infant was 0.3\% of the rhein intake of the mother, which is far below the oral rhein dose necessary for inducing a laxative effect.12 The authors also reported that none of the breast-fed infants showed any difference in stool consistency in comparison with the nonbreast-fed infants.12 Another study in 100 breast milk samples found similar results.13

Contraindications7

- Intestinal obstruction
- Abdominal pain of unknown origin
- Intestinal inflammation
- Prolapsed rectum or anus
- Kidney dysfunction
- Children under 12 years
Caution
Avoid use for longer than 1–2 weeks as frequent use causes the colon to function poorly, creating laxative dependence.10

Constituents
Anthraquinones:14,15 sennosides A and B (mostly), sennosides C and D (minor amounts)

Toxicity
LD\textsubscript{50} (intraperitoneal):16 500–750 mg/kg

Pharmacology
\begin{itemize}
\item Senna leaf and fruit are stimulant laxatives, where the leaf is a stronger cathartic than the fruit.17,18
\item The cathartic action is limited primarily to the colon.17
\item Sennosides irritate the lining of the large intestine, causing contraction.1
\item Sennosides A and B appear to induce fluid secretion in the colon.1
\item Prostaglandins may be involved in the laxative effect.14
\item Anthroquinones produce a laxative effect 8–12 hours after administration, though sometimes up to 24 hours can be required.17
\item Anthroquinone laxative use is not associated with an increased risk of developing colorectal adenoma or carcinoma.19
\end{itemize}

Drug interactions
Cardiac glycoside drugs1

Parts used7
Leaf, fruit

References
260 _Herbal medicines_

SIBERIAN GINSENG
Eleutherococcus senticosus

Synonyms/common names/related substances
Ci wu jia, ciwu jia, devil’s bush, devil’s shrub, eleuthera, eleuthero, eleuthero ginseng, eleutherococ, eleutherococc, *Eleutherococci radix*, eleutherococcus, ginseng, phytoestrogen, prickly eleutherococc, Russian root, shigoka, thorny bearer of free berries, touch-me-not, untouchable, ussuri, ussurian thorny pepperbrush, wild pepper, wu jia pi, wu-jia

Indications

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ventricular late potential (coronary artery disease and myocarditis):</td>
<td>B1</td>
</tr>
<tr>
<td>Acute cerebral infarction:</td>
<td>B2</td>
</tr>
<tr>
<td>Hyperlipidemia (with Elscholtzia splendens):</td>
<td>C</td>
</tr>
<tr>
<td>Cognitive performance:</td>
<td>C</td>
</tr>
<tr>
<td>Herpes simplex type II:</td>
<td>C</td>
</tr>
<tr>
<td>Adaptogen:</td>
<td>F</td>
</tr>
</tbody>
</table>

Pregnancy

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>No evidence to support androgenization:</td>
<td>2</td>
</tr>
<tr>
<td>A case was reported of a 30-year-old woman who gave birth to a full-term baby boy with signs of androgenization following ingestion of ‘ginseng’ during the woman’s pregnancy. After further investigation, the herbal preparation used by the mother appeared to be adulterated by the herb silk vine (Periploca sepium) and not Siberian ginseng (E. senticosus).</td>
<td>3</td>
</tr>
<tr>
<td>Minimal risk:</td>
<td>3</td>
</tr>
<tr>
<td>Prevents embryotoxic effects:</td>
<td>3</td>
</tr>
</tbody>
</table>

Administration of Siberian ginseng extract during pre-natal and pre-embryonic periods of development prevented embryotoxic effects in pregnant rats treated with ethanol and sodium salicylate.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimal risk:</td>
<td>3</td>
</tr>
<tr>
<td>Anti-carcinogenic effects:</td>
<td>3</td>
</tr>
</tbody>
</table>
Administration of Siberian ginseng inhibited the carcinogenesis induced by transplacental administration of N-nitrosoethylurea in rats. This led to longer survival of the rats and lower occurrence and/or multiplicity of tumors (mainly those of the central nervous system).

There are no reports in the literature of Siberian ginseng being either safe or contraindicated during pregnancy.

There are no reports in the literature of Siberian ginseng being either safe or contraindicated during lactation.

Constituents
- Eleutherosides A through M
- Saponins: daucosterol, beta-sitosterol, hederasaponin B
- Coumarins: isofraxidin
- Lignans: sesamin, syringaresinol
- Phenylpropanoids: syringin, caffeic acid, sinapyl alcohol, coniferyl aldehyde, protocatechuic acid
- Betulinic acid
- Vitamin E

Toxicity
- LD$_{50}$ of root: 31 g/kg
- LD$_{50}$ of liquid extract: 10 mL/kg

Pharmacology
- Siberian ginseng inhibits the alarm reaction to stress and decreases the activation of the adrenal cortex.
- Siberian ginseng has anti-viral activity, where it inhibits human rhinovirus, respiratory syncytial virus, and influenza A virus.
- Siberian ginseng increases lymphocyte count, particularly T lymphocytes, and increases phagocyte activity.
- Several constituents of Siberian ginseng have antioxidant and possible anticancer effects, particularly on leukemia cells.
- The constituent coniferyl aldehyde protects DNA against breakage caused by ultraviolet light.
- The constituent protocatechuic acid may inhibit platelet aggregation.
- Siberian ginseng eleutheroside G and saponins may have hypoglycemic activity.
- Siberian ginseng may have anti-tubercular activity.
Intravenous Siberian ginseng may reduce myocardial infarct size.24

Siberian ginseng may inhibit cytochrome P450 CYP1A2 and CYP2C9 enzymes.25,26 It does not appear to inhibit drug metabolism by CYP2D6 and CYP3A4 enzymes in humans.25,27

\textbf{Drug interactions}1

- Alcohol (ethanol)26
- Anti-coagulant/anti-platelet drugs20
- Anti-diabetic drugs21
- Central nervous system depressants26
- Drugs metabolized by cytochrome P450 1A2 (CYP1A2) and P450 2C9 (CYP2C9) enzymes25,26
- Digoxin (Lanoxin)9,28

\textbf{Parts used}1

Root, rhizome

\textbf{References}

5. Winther K, Ranlov C, Rein E, Mehlsen J. Russian root (Siberian ginseng) improves cognitive functions in middle-aged people, whereas Ginkgo biloba seems effective only in the elderly. J Neurological Sci 1997; 150:S90.
SQUAW VINE
Mitchella repens

Synonyms/common names/related compounds
Checkerberry, deerberry, hive vine, noon kie oo nah yeah, one-berry, partridgeberry, running box, squaw berry, squawvine, twinberry, two-eyed berry, winter clover

Indications
Induces labor Evidence grade F

Pregnancy
Induces labor Evidence level 4

Squaw vine is part of a combination of herbal medicines that have been traditionally used in the third trimester to prepare a woman for delivery; this preparation is called ‘mother’s cordial’ or ‘partus preparatus’. In addition to squaw vine, mother’s cordial typically contains: black cohosh (Cimicifuga racemosa), raspberry (Rubus idaeus), blue cohosh (Caulophyllum thalictroides) and false unicorn (Chamaelirium luteum).

Abortifacient: Evidence level 4

A botanical safety compendium reported that squaw vine is a potential abortifacient. There are no reports in the scientific literature of squaw vine being either safe or contraindicated during pregnancy.

Lactation
Unknown: Evidence level 5

There are no reports in the scientific literature of squaw vine being either safe or contraindicated during lactation.

Constituents
Resin, wax, mucilages, dextrin, saponins, alkaloids, glycosides, tannins

Pharmacology
No available information

Drug interactions
None documented
Part used
Above ground parts

References
ST JOHN’S WORT

Hypericum perforatum

Synonyms/common names/related substances
Amber, amber touch-and-heal, demon chaser, fuga daemonum, goatweed, hardhay, hypereikon, hyperici herba, hypericum, Johns wort, klamath weed, millepertuis, Rosin rose, Saint Johns wort, Saint John’s wort, Saynt Johannes wort, SJW, St Johns wort, St John’s wort, tipton weed

Indications

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild to moderate depression:2–6</td>
<td>A</td>
</tr>
<tr>
<td>Anxiety (with valerian):7</td>
<td>B2</td>
</tr>
<tr>
<td>Acute otitis media (with Verbascum thapsus, Calendula flores and Allium sativum):10</td>
<td>B2</td>
</tr>
<tr>
<td>Obsessive compulsive disorder :8</td>
<td>C</td>
</tr>
<tr>
<td>Psychological menopause symptoms:9</td>
<td>C</td>
</tr>
<tr>
<td>Premenstrual syndrome:10</td>
<td>C</td>
</tr>
<tr>
<td>Chronic colitis (with Taraxacum officinale, Melissa officinalis, C. officinalis and Foeniculum vulgare):9</td>
<td>C</td>
</tr>
<tr>
<td>Seasonal affective disorder:11–13</td>
<td>C</td>
</tr>
</tbody>
</table>

Pregnancy

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimal risk:14</td>
<td>2</td>
</tr>
<tr>
<td>Does not affect cognitive development:16</td>
<td>3</td>
</tr>
</tbody>
</table>

A case of a 38-year-old women who started taking St John’s wort at 24 weeks gestation was reported in a letter to the editor.14 The woman’s pregnancy was unremarkable, with the exception of late onset of thrombocytopenia (the author did not attribute this to St John's wort).14 The offspring was born healthy, had a normal birthweight and APGAR scores, and physical examination and laboratory results were normal.14 Behavioral assessment at 4 and 23 days was within normal.15

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimal risk:16</td>
<td>3</td>
</tr>
</tbody>
</table>

A study on the cognitive impact of prenatal exposure to St John’s wort in mice for 2 weeks before mating and throughout gestation found that prenatal exposure to
a therapeutic dose of St John’s wort did not have a major impact on certain cognitive tasks in mice offspring.16

|**Minimal risk:**17 | Evidence level 3 |
| **Lower offspring weight:**17 | Evidence level 3 |

A study was conducted where Sprague-Dawley rats were exposed to dietary doses of St John’s wort 1–25 times the recommended human dose.17 St John’s wort had no effect on maternal weight gain or duration of gestation.17 Offspring body weights were similar to controls, but for some treated groups, offspring weighed significantly less than the control.17 There were no St John’s wort-related behavioral alterations on any measure.17 Whole and regional brain weights of offspring at adulthood indicated no significant effects of St John’s wort.17

Minimal risk:18	Evidence level 3
Lower birthweights:18	Evidence level 3
No long-term behavioral deficits:18	Evidence level 3

A behavioural study on mice offspring exposed antenatally to St John’s wort found that birthweights of male offspring were less in the St John’s wort group than in the placebo group.18 Offspring in both treatment groups showed no long-term statistical differences in early developmental tasks, locomotor activity, and exploratory behavior throughout development.18 Performances on a depression task and on anxiety tasks revealed no differences between treatment groups.18

|**Minimal risk:**19 | Evidence level 3 |
| **Does not affect long-term growth and physical maturation:**19 | Evidence level 3 |

St John’s wort was administered to mice to determine whether pre-natal exposure to the herb affects long-term growth and physical maturation of mouse offspring.19 Maternal administration of St John’s wort before and throughout gestation did not affect long-term growth and physical maturation of exposed mouse offspring.19

Conflicting evidence

|**Nonmutagenic:**20 | Evidence level 3 |
|**Teratogenic:**21 | Evidence level 3 |
A study on organogenesis found that hypericin induced teratogenic effects in whole rat embryo cultures.21 A study on mammalian cells, however, showed that a standardized aqueous ethanolic of St John’s wort did not induce any mutagenic effects.20

<table>
<thead>
<tr>
<th>Effect</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increases uterine tone,22</td>
<td>3</td>
</tr>
</tbody>
</table>

St John’s wort was shown to increase uterine tone in animals.22

<table>
<thead>
<tr>
<th>Effect</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emmenagogue,23</td>
<td>4</td>
</tr>
<tr>
<td>Uterine stimulant,23</td>
<td>4</td>
</tr>
<tr>
<td>Abortifacient,23</td>
<td>4</td>
</tr>
</tbody>
</table>

A review article on the potential value of plants as sources of anti-fertility agents reported that St John’s wort is an abortifacient, emmenagogue and uterine stimulant.23

Homeopathic H. perforatum (Hypericum)

<table>
<thead>
<tr>
<th>Effect</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimal risk,24</td>
<td>1</td>
</tr>
</tbody>
</table>

A homeopathic preparation of \textit{H. perforatum}, called Hypericum, beyond the potency (dilution) of 12C, does not contain any molecules of the original substance. Although the principles of homeopathy are difficult to apply to evidence-based medicine research, a systematic review determined that homeopathic preparations do not significantly differ from placebo.24

Lactation

<table>
<thead>
<tr>
<th>Effect</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>May cause colic, drowsiness or lethargy,25</td>
<td>1</td>
</tr>
<tr>
<td>Minimal risk,25</td>
<td>1</td>
</tr>
</tbody>
</table>

A prospective observational cohort study was conducted on 33 breast-feeding women receiving St John’s wort (group 1) and for comparison, 101 disease-matched (group 2) and 33 age- and parity-matched controls with no disease (group 3).25 In the group receiving St John’s wort, there were two cases of colic, two cases of drowsiness and one case of lethargy.25 Specific medical treatment was not required for the infants.25 No significant difference was observed in the frequency of maternal report of decreased milk production among the groups, nor was a difference found in infant weight over the first year of life.25

<table>
<thead>
<tr>
<th>Effect</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crosses into breast milk,26</td>
<td>2</td>
</tr>
<tr>
<td>Minimal risk,26</td>
<td>2</td>
</tr>
</tbody>
</table>
An analysis was performed on four breast-milk samples (fore and hind milk) during an 18-hour period from a mother with post-natal depression who had taken St John’s wort during pregnancy in order to measure concentration of hypericin and hyperforin. Only hyperforin was excreted into breast milk at a low level. No side effects were seen in the mother or infant.

Homeopathic H. perforatum (Hypericum)

A homeopathic preparation of *H. perforatum*, called Hypericum, beyond the potency (dilution) of 12C, does not contain any molecules of the original substance. Although the principles of homeopathy are difficult to apply to evidence-based medicine research, a systematic review determined that homeopathic preparations do not significantly differ from placebo.

Constituents
- Naphthodianthrones: hypericin, pseudohypericin
- Flavonoids: quercetin, quercetrin, amentoflavone, hyperin
- Phloroglucinols: hyperforin, adhyperforin
- Essential oil

Toxicity
- Delayed hypersensitivity photodermatitis.
- Hypericin is believed to be the photosensitizing agent present in St John’s wort.

Pharmacology
- St John’s wort effects on serotonin may be primarily responsible for its anti-depressant activity.
- Extracts of St John’s wort inhibit the reuptake of serotonin, norepinephrine, and dopamine in vitro.
- Hyperforin and adhyperforin were shown to modulate the effects of serotonin, dopamine, and norepinephrine, and to act as serotonergic 5-hydroxytryptamine (5-HT)3 and 5-HT4 receptor antagonists.
- Hypericin inhibits in vitro almost irreversibly both type A and B monoamine oxidase in rat brain mitochondria.
- St John’s wort induces some of the cytochrome P450 (CYP) enzymes and may interfere with drug metabolism.
- Topical application of St John’s wort inhibits the proliferation of T lymphocytes in inflammatory skin disorders.
- St John’s wort has anti-bacterial activity.
- In human and animal cancer cells, hyperforin inhibited tumor cell growth by induction of apoptosis.
Drug interactions

5-HT1 agonists44,45
Aloprozolam46
Aminolaevulinic acid47
 Amitriptyline48–50
 Analgesics with serotonergic activity33–35,45
 Antidepressants45,51–53
 Barbituates54
 Carbamazepine55
 Cyclosporine44,49,50,56–66
 Digoxin44,50,67–69
 Dextromethorphan33–35,45
 Fenfluramine53
 Fexofenadine70
 Irinotecan71,72
 Monoamine oxidase inhibitors35,37
 Mycophenolate mofetil73
 Narcotics54,74
 Nelazodone75
 Nonnucleoside reverse transcriptase inhibitors49,76,77
 Nortriptyline48,50
 Oral contraceptives44,78–80
 Paroxetine65,52,53
 Phenobarbital44
 Phenprocoumon44
 Phenytoin44
 Photosensitizing drugs51
 Protease inhibitors44,50,76
 Reserpine58
 Sertraline75
 Simvastatin81
 Tacrolimus73,82
 Theophylline44,50,83
 Warfarin44,78,84
 Drugs metabolized by cytochrome P450 enzymes40,44,46,50,59,69,76,78,85

Parts used

Whole plant86

References

272 Herbal medicines

274 Herbal medicines

45. Singhal AB, Caviness VS, Begleiter AF et al. Cerebral vasoconstriction and stroke after use of serotonergic drugs. Neurology 2002; 58:130–133.

276 *Herbal medicines*

STINGING NETTLE
Urtica dioica, U. urens

Synonyms/common names/related compounds
Common nettle, dwarf nettle, great stinging nettle, nettle, nettles, ortie, small nettle, urtica, Urticae herba et folium

Indications
Above ground parts
- Allergic rhinitis: Evidence grade B2
- Osteoarthritis: Evidence grade B2

Root
- Benign prostatic hyperplasia (with saw palmetto): Evidence grade B1
- Benign prostatic hyperplasia: Evidence grade B2

Pregnancy
Above ground parts
- Potential abortifacient: Evidence level 4
- Emmenagogue: Evidence level 4
- Uterine stimulant constituent: Evidence level 4
- Estrogenic: Evidence level 4

A review article on the potential value of plants as sources of anti-fertility agents reported that stinging nettle was a potential abortifacient, emmenagogue and that its constituent, 5-hydroxytryptamine, was a uterine stimulant. This review article also reported that singing nettle has estrogenic activity.

Root
- Interferes with human sex hormone-binding globulin: Evidence level 3

Stinging nettle root has been shown to interfere with human sex hormone-binding globulin. The root is principally used in the treatment of prostate disorders and as such, would not likely be used during pregnancy. There are no
reports in the scientific literature of stinging nettle root being either safe or contraindicated during pregnancy.

Lactation

Above ground parts

<table>
<thead>
<tr>
<th>Unknown:</th>
<th>Evidence level 5</th>
</tr>
</thead>
</table>

There are no reports in the scientific literature of stinging nettle leaf being either safe or contraindicated during lactation.

Root

<table>
<thead>
<tr>
<th>Interferes with human sex hormone-binding globulin:</th>
<th>Evidence level 3</th>
</tr>
</thead>
</table>

Stinging nettle root has been shown to interfere with human sex hormone-binding globulin. The root is principally used in the treatment of prostate disorders and as such, would not likely be used during lactation. There are no reports in the scientific literature of stinging nettle root being either safe or contraindicated during lactation.

Constituents

- Leaf:
 - β-sitosterol, flavonoids (quercetin, rutin, kaempferol), carotene, vitamin C, vitamin K, potassium, calcium, chlorophyll, 5-hydroxytryptamine
- Root:
 - polysaccharides

Toxicity

- LD$_{50}$ (leaf infusion): 1.92 g/kg
- LD$_{50}$ (leaf decoction): 1.72 g/kg

The stinging nettle hairs on the leaf contain histamine, acetylcholine and serotonin; these hairs cause skin irritation when touched.

Pharmacology

Above ground parts

- Stinging nettle leaf has analgesic, anti-inflammatory, local anesthetic, hemostatic, antibacterial, antiviral, and hypoglycemic effects.
- Stinging nettle contains the uterotropin constituent 5-hydroxytryptamine.
- The constituent quercetin decreases histamine release from basophils and mast cells.
- The leaf has been shown to have diuretic properties where it increases urine output and to slightly decrease systolic blood pressure and body weight in people with venous insufficiency.
- Stinging nettle may inhibit adrenergic stimulation, tumor necrosis factor, and platelet activation factor.18
- Stinging nettle lowers body temperature and may act as a central nervous system depressant.13,19,20
- Stinging nettle may have anti-seizure activity.19
- Stinging nettle may decrease blood pressure and heart rate.18,19
- Stinging nettle contains a large amount of vitamin C and carotene.17

\textbf{Root}
- Stinging nettle root has immunomodulating and weak anti-inflammatory properties.15,18,22
- Root extracts have been shown to decrease binding capacity of sex hormone-binding globulin and to suppress prostatic cell metabolism.14,18,22
- Root extracts have been shown to increase urine output, decreased nocturia, and decreased urinary frequency.12,13,18,20,22

\textbf{Drug interactions}1
- Anti-coagulants16
- Anti-diabetic drugs19
- Anti-hypertensive agents19
- Central nervous system depressants19

\textbf{Parts used}1
- Above ground parts, leaf

\textbf{References}
280 *Herbal medicines*

TURMERIC
Curcuma longa, C. aromatic

Synonyms/common names/related substances
Curcuma, Curcumae longae rhizoma, curcumin, Indian saffron, tumeric, turmeric root

Indications

Oral

- Anti-inflammatory:\(^2\) Evidence grade B1
- Dyspepsia:\(^3\) Evidence grade B1
- Biliary dyskinesia (with celandine):\(^4\) Evidence grade B2
- Gallstone prevention (cholagogue):\(^5,6\) Evidence grade B2
- Osteoarthritis (with Withania somnifera, Boswellia serrata, and a zinc complex):\(^7\) Evidence grade B2
- Human immunodeficiency virus:\(^8\) Evidence grade B2
- Peptic ulcers:\(^9\) Evidence grade C
- Rheumatoid arthritis:\(^10\) Evidence grade C
- Uveitis:\(^11\) Evidence grade C
- Cancer prevention:\(^12-17\) Evidence grade D
- Hyperlipidemia:\(^18\) Evidence grade D

Topical

- Cancer prevention:\(^19\) Evidence grade D
- Scabies:\(^20\) Evidence grade D

Pregnancy

Therapeutic doses

- Nonteratogenic:\(^21-23\) Evidence level 3
Animal experiments reported that oral turmeric was not teratogenic in mice or rats. Turmeric was reported as nonmutagenic and nontoxic at high doses in rats and monkeys.

Inhibits uterine stretching: An animal experiment of the stretch of the uterus imposed by the growing fetus, which contributes to the onset of labor, showed that curcumin inhibited one of the signalling pathways (c-Jun NH2-terminal kinase (JNK)) necessary for optimal stretching of the uterus.

Minimal risk: A retrospective explorative study was conducted to ascertain the knowledge, attitudes, and practices regarding diet patterns during pregnancy and lactation among non-Bengali Muslim mothers. Turmeric was believed to improve the baby’s complexion and to protect the baby and mother from cough and cold. No adverse effects associated with the ingestion of turmeric during pregnancy were reported.

Potential abortifacient, emmenagogue, and uterine stimulant: A review article on the potential value of plants as sources of anti-fertility agents reported that turmeric was a potential abortifacient, emmenagogue, and uterine stimulant.

Spice: A natural medicine compendium reported that turmeric is of minimal risk during pregnancy if used as a spice.

Lactation: Therapeutic doses

Crosses into breast milk:
Animal experiments reported the passage of active constituents and/or metabolites of turmeric and curcumin via the translactational route into breast milk.29,30 There is no report in the literature of turmeric being either safe or contraindicated during lactation.

| Minimal risk:27 | Evidence level 4 |

A retrospective explorative study was conducted to ascertain the knowledge, attitudes and practices regarding diet patterns during pregnancy and lactation among non-Bengali Muslim mothers.27 Turmeric was believed to improve the baby’s complexion and to protect the baby and mother from cough and cold.27 No adverse effects associated with the ingestion of turmeric during lactation were reported.27

Spice

| Minimal risk:1 | Evidence level 4 |

A natural medicine compendium reported that turmeric is of minimal risk during lactation if used as a spice.1

Constituents1,31
- Diarylheptanoids: curcumin
- Volatile oils: turmerone, zingiberene, bisabalona, guaiane, curlone
- Sugars: glucose, fructose, arabinose
- Vitamin C

Toxicity
- LD\textsubscript{50} of curcumin in mice (oral):32 $>$2 g/kg
- Turmeric was reported as nonmutagenic and nontoxic at high doses:24,25 300 mg/kg in rats and 2.5 g/kg in monkeys

Pharmacology
- In clinical trials, curcumin is a potent anti-inflammatory agent where its action is reported to be comparable to phenylbutazone.2
- In vitro, curcumin was shown to inhibit interleukin (IL)-8, MIP-1\textgreek{a}, MCP-1, IL-1\textgreek{b}, tumor necrosis factor (TNF) \textgreek{a}, 5-lipoxygenase activity, cyclooxygenase activity and 5-hydroxy-eicosatetraenoic acid (5-HETE) formation, leukotriene formation and platelet aggregation, and to increase the breakdown of fibrin.32-38
- Curcumin was shown to significantly decrease the level of serum lipid peroxides (33\%), increase high-density lipoprotein cholesterol (29\%) and decrease total serum cholesterol, thereby having a preventive effect on arterial disease.18
Turmeric increases bile secretion and bile flow, and induces contraction of the human gallbladder (cholagogue).6,39,40 Turmeric has significant anti-oxidant activity and may protect DNA against free radical damage.17,41,42 Turmeric may significantly increase gastric wall mucus and restore the non-protein sulphydril (NP-SH) content in the stomach.43 Curcumin and turmeric were shown to inhibit human immunodeficiency virus (HIV)-1, HIV-2, and HIV-integrase.44–46 Curcumin was shown to have anti-mutagen activity, anti-carcinogen activity, chemopreventive activity in colon carcinogenesis, reduce urinary excretion of mutagens in smokers, and inhibit and/or induce apoptosis in prostate cancer cells, skin and gastric tumors, colonic epithelial cell dysplasia, and others.12–16 Curcumin is a potent inhibitor of cytochrome P450 (CYP) 1A1/1A2, a less potent inhibitor of CYP 2B1/2B2, and a weak inhibitor of CYP 2E1.47 Turmeric may decrease hepatocyte glutathione levels and curcumin appears to induce glutathione-S-transferase activity in mice.48,49

Drug interactions

Anti-platelet drugs50

Reserpine and indometacin50

Drugs metabolized by cytochrome P450 (CYP) 1A1/1A2, CYP 2B1/2B2, and CYP 2E1 enzymes.47

Part used51

Rhizome

References

VALERIAN
Valeriana officinalis

Synonyms/common names/related compounds
Amantilla, all-heal, baldrian, baldrianwurzel, Belgium valerian, common valerian, fragrant valerian, garden heliotrope, garden valerian, Indian valerian, Mexican valerian, Pacific valerian, valeriana, Valeriana officinalis, Valeriana rhizome, Valerianae radix, valeriane

Indications

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insomnia</td>
<td>B1</td>
</tr>
<tr>
<td>Anxiety</td>
<td>B2</td>
</tr>
<tr>
<td>Sedation</td>
<td>B2</td>
</tr>
<tr>
<td>Sleep quality and quantity (with lemon balm)</td>
<td>B2</td>
</tr>
<tr>
<td>Mental stress (with kava)</td>
<td>B2</td>
</tr>
<tr>
<td>Fibromyalgia (as a bath)</td>
<td>B2</td>
</tr>
<tr>
<td>Anxiety (with passion flower)</td>
<td>C</td>
</tr>
<tr>
<td>Anxiety (with St John’s wort)</td>
<td>C</td>
</tr>
<tr>
<td>Coronary heart disease</td>
<td>C</td>
</tr>
</tbody>
</table>

Pregnancy

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonteratogenic</td>
<td>2</td>
</tr>
<tr>
<td>Minimal risk</td>
<td>3</td>
</tr>
<tr>
<td>May retard ossification</td>
<td>3</td>
</tr>
</tbody>
</table>

According to a study on adverse effects of intoxication during pregnancy, there are no reports of teratogenic activity from valerian intoxication during pregnancy. In rats, 30-day administration of the valepotriate constituents of valerian did not change the average length of estral cycle, nor the number of estrous phases during this period, nor the fertility index. No changes were detected in the development of the offspring after treatment during pregnancy. No signs of fetotoxicity or external malformations were observed, although internal examination revealed an increase in number of retarded ossification at higher doses.
Cytotoxic and mutagenic: Evidence level 3

Valepotriates have been shown to be cytotoxic and mutagenic in vitro.\(^{19,20}\)

Lactation

Unknown: Evidence level 5

There are no reports in the scientific literature of valerian being either safe or contraindicated during lactation.

Contraindication

Surgery\(^{21}\)

Caution

Driving or operating heavy machinery\(^{22}\)

Liver disease\(^{23}\)

Constituents

- Valepotriates:\(^{21}\) valtrate, isovaltrate, didrovaltrate
- Volatile oils:\(^{23}\) kessanes, valerenal, valerenone, valerenic acid
- Monoterpene:\(^{24,25}\) berneol
- Sesquiterpenes:\(^{24,25}\) valerenic acid, valerenone, kessyl glycol
- Lignans\(^{24}\)
- \(\gamma\)-Aminobutyric acid (GABA)\(^{24}\)

Toxicity

- LD\(_{50}\) of essential oil (intraperitoneal):\(^{26}\) 15 g/kg
- LD\(_{50}\) of valerenic acid (intraperitoneal):\(^{26}\) 300 mg/kg
- LD\(_{50}\) of valepotriate constituents (intraperitoneal):\(^{22}\) 64–150 mg/kg
- Valepotriates were not found to be toxic at 4.6 g/kg orally in mice\(^{22}\)
- Valepotriates are poorly absorbed and subject to a significant first pass effect.\(^{27}\) As such, they are quickly degraded to less toxic metabolites and are not likely to cause acute adverse reactions.\(^{24}\)

Pharmacology

- Valerian has sedative, anxiolytic, antidepressant, anticonvulsant, hypotensive and antispasmodic effects.\(^{12,25,28}\)
- The valepotriate constituents were shown to decrease benzodiazepine withdrawal and to bind dopamine receptors.\(^{24,25}\)
- The constituents valerenic acid and kessyl glycol were shown to cause sedation in animals.\(^{24}\)
- Valerenic acid may inhibit the enzyme system responsible for the catabolism of GABA, thereby increasing GABA concentrations and decreasing central nervous system activity.\(^{24}\)
The lignans and GABA constituents in valerian may contribute to its sedative effect. Valerian does not appear to cause adverse effects with respect to reaction time, alertness, and concentration the morning after intake. In healthy elderly people, valerian does not appear to affect psychomotor performance. Valerian may affect the cytochrome P450 CYP3A4 enzyme.

Drugs interactions

- Alcohol
- Barbiturates
- Benzodiazepines
- Drugs metabolized by cytochrome CYP3A4
- Sedative drugs

Part used

Root

References

WILD YAM
Dioscorea villosa

Synonyms/common names/related compounds
Atlantic yam, barbasco, China root, colic root, devil’s bones, dioscorea, Dioscoreae, Mexican yam, natural DHEA, phytoestrogen, rheumatism root, wild Mexican yam, yam, yuma

Indications

Oral
- Menopausal symptoms (with burdock root, licorice root, motherwort, and angelica root): Evidence grade B2
- Hyperlipidemia: Evidence grade D
- Unproven hormonal effects: Evidence grade D

Topical
- No effect on menopausal symptoms: Evidence grade B1
- Unproved hormonal effects: Evidence grade B1

Pregnancy
- Uterine stimulant: Evidence level 4

Wild yam is believed to induce uterine contractions. There are no reports in the literature of wild yam causing uterine contractions.

Cream
- Wild yam products may contain synthetic progesterone: Evidence level 4

Commercial wild yam products may contain synthetic progesterone and therefore have hormonal effects.

Diosgenin
- Nonteratogenic: Evidence level 3

Animal studies have reported that diosgenin, a constituent of wild yam, is non-teratogenic.
Lactation

Unknown: Evidence level 5

There are no reports in the literature of wild yam being either safe or contraindicated during lactation.

Cream

Wild yam products may contain synthetic progesterone: Evidence level 4

Commercial wild yam products may contain synthetic progesterone and therefore have hormonal effects.

Constituents
- Saponins: diosgenin, dioscin
- Alkaloid: dioscorin

Toxicity
- LD$_{50}$ of aqueous fraction: 1.4 g/kg (mice)
- LD$_{50}$ of dioscoretine: 0.58 g/kg (mice)

Pharmacology
- Diosgenin is a steroid precursor that was used in the first pharmaceutical manufacture of oral contraceptives, topical hormones, systemic corticosteroids, androgens, estrogens, progesterone, and other sex hormones.
- The chemical conversion of diosgenin into estrogen, progesterone, or any other steroidal compound has not been demonstrated in the human body.
- Topical application of wild yam has not been shown to affect serum levels of follicle-stimulating hormone, estradiol, or progesterone.
- Oral administration of wild yam did not increase serum dehydroepiandrosterone sulfate levels.
- Wild yam has been shown to enhance estradiol binding to estrogen receptors and to induce transcription activity in estrogen-responsive cells.
- Diosgenin may stimulate the growth of mammary tissue.
- The saponins, namely dioscin, are gastrointestinal irritants.

Drug interactions
- Nonsteroidal anti-inflammatory drugs
- Hormone replacement therapy/oral contraceptives
- Insulin/oral hypoglycemic agents
- Fibrin acid derivatives
- Cholesterol-lowering agents

Parts used
Root and rhizome
References

YARROW
Achillea millefolium

Synonyms/common names/related substances
Achilee, achillea, acuilee, band man’s plaything, bauchweh, birangasifa, bloodwort, carpenter’s weed, civan percemi, common yarrow, devil’s nettle, devil’s plaything, erba da cartentieri, erba da falegname, gemeine schafgarbe, green arrow, herbe aux charpentiers, katzenkrat, milefolio, milfoil, millefeuille, millefolii flos, millefolii herba, millefolium, millegoglie, noble yarrow, nosebleed, old man’s pepper, roga mari, sanguinary, soldier’s wound wort, staunchweed, tausendaugbram, thousand-leaf, wound wort

Indications

<table>
<thead>
<tr>
<th>Indications</th>
<th>Evidence grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rehabilitation following chronic hepatitis</td>
<td>E</td>
</tr>
<tr>
<td>Anti-inflammatory</td>
<td>E</td>
</tr>
<tr>
<td>Blood sugar regulation</td>
<td>E</td>
</tr>
<tr>
<td>Diuretic</td>
<td>E</td>
</tr>
<tr>
<td>Anti-bacterial</td>
<td>E</td>
</tr>
<tr>
<td>Anti-coagulant activity</td>
<td>E</td>
</tr>
<tr>
<td>Hypotensive</td>
<td>E</td>
</tr>
</tbody>
</table>

Pregnancy

<table>
<thead>
<tr>
<th>Indications</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduces fetal weight</td>
<td>3</td>
</tr>
<tr>
<td>Increases placental weight</td>
<td>3</td>
</tr>
</tbody>
</table>

When administered to pregnant rats at 56 times the human dose, yarrow was associated with reduced fetal weight and increased placental weight. The yarrow constituent thujone is neurotoxic, where it was found to cause convulsions in the central nervous system of rats.

Neurotoxic component (thujone): Evidence level 3

Porphyrogenic component (thujone): Evidence level 3

The yarrow constituent thujone is porphyrogenic and may be hazardous to patients with underlying defects in hepatic heme synthesis.
Weakly genotoxic: Evidence level 3

Yarrow tea was weakly genotoxic in a somatic mutation and recombination test using *Drosophila melanogaster*.12

May interfere with spermatogenesis: Evidence level 3

A study showed that when Swiss mice where exposed to ethanolic and hydro-alcoholic extracts of *Achillea* flowers, observations of spermatogenesis showed exfoliation of immature germ cells, germ cell necrosis and seminiferous tubule vacuolization.13

Potential abortifacient: Evidence level 4

Emmenagogue: Evidence level 4

A review article on the potential value of plants as sources of anti-fertility agents reported that yarrow was a potential abortifacient and an emmenagogue.14

Lactation

Neurotoxic component (thujone): Evidence level 3

The yarrow constituent thujone is neurotoxic, where it was found to cause convulsions in the central nervous system of rats.10

Porphyrogenic component (thujone): Evidence level 3

The yarrow constituent thujone is porphyrogenic and may be hazardous to patients with underlying defects in hepatic heme synthesis.11

Weakly genotoxic: Evidence level 3

Yarrow tea was weakly genotoxic in a somatic mutation and recombination test using *D. melanogaster*.12

Caution

Epilepsy15

Toxic constituents

- Volatile oils:8,15 chamazulene, thujone (trace amounts) and other azulenes
- Polyunsaturated alkamides16
- Sesquiterpenoids:17 achimillic acids (A, B C)
- Alkaloid:7 achilleine

Toxicity

LD$_{50}$ in mice (oral):14 3.65 g/kg
Pharmacology

- In diabetic mice and rats, yarrow was shown to have marked hypoglycemic and glycogen-sparing properties.\(^4\)
- The polyunsaturated alkamides from *Achillea* species were shown to have anti-inflammatory activity where they inhibited cyclooxygenase and 5-lipoxygenase assays in vitro.\(^16\)
- The sesquiterpenoids constituents achimillic acids A, B, and C from yarrow were shown to have anti-tumor activity against mouse P-388 leukemia cells in vivo.\(^17\)
- The volatile oil of yarrow was reported to have a depressant activity on the central nervous system.\(^14\)
- The alkaloid constituent achilleine was found to decrease blood clotting time in rabbits.\(^7\)
- Yarrow showed some evidence of diuretic activity.\(^5\)
- Yarrow has moderate anti-bacterial activity.\(^6\)
- Persons allergic to the Asteraceae family may exhibit allergic reactions, such as contact dermatitis, when exposed to yarrow.\(^18\)–\(^20\) Alpha-peroxyachifolid was identified as the contact allergen in yarrow.\(^21\)
- Yarrow alkaloids were reported to have hypotensive properties.\(^15\)

Drug interactions

- Antacids\(^22\)
- Anticoagulants and antiplatelets\(^7\)
- Barbiturates\(^14\)
- Hypertensive or hypotensive therapy\(^15\)
- Proton pump inhibitors\(^22\)

Part containing toxins\(^14\)

Flower head

References

19. Paulsen E, Andersen KE, Hausen BM. Compositae dermatitis in a Danish dermatology department in one year (I). Results of routine patch testing with the sesquiterpene lactone mix supplemented with aimed patch testing with extracts and sesquiterpene lactones of Compositae plants. Contact Dermatitis 1993; 29:6–10.

Chapter 5
VITAMINS

Vitamins are frequently taken by the general public to correct nutritional deficiencies and to prevent disease. In pregnancy, vitamins are often taken to help with the symptoms of pregnancy (vitamin B6 for nausea), to help prevent anemia (vitamin B12) and to support newborn blood clotting (vitamin K). In the case of some vitamins, such as vitamin A, too high a dose may be associated with teratogenic effects.

In selecting the six vitamins reviewed here, we focused on the vitamins that would support the common deficiencies of pregnancy and lactation and the vitamins that, in elevated doses, may have harmful effects on the mother or fetus. All eight reviews are presented as follows:

Vitamin name
Name of the vitamin.

Pregnancy
The safety of this herb during pregnancy. According to evidence-based medicine principles, the safety of this herb during pregnancy is evaluated based on levels of evidence (see Chapter 3).

Lactation
The safety of this herb during lactation. According to evidence-based medicine principles, the safety of this herb during lactation is evaluated based on levels of evidence (see Chapter 3).
VITAMIN A

Pregnancy

May reduce maternal mortality and morbidity:\(^1\) Evidence level 1a

A systematic review was conducted on the effect of vitamin A supplementation during pregnancy and how it improves maternal mortality and morbidity.\(^1\) In five trials involving 23,426 women, weekly vitamin A supplementation resulted in a reduction in maternal mortality up to 12 weeks post-partum and a reduction in night blindness.\(^1\)

Non-teratogenic at 6000 IU per day:\(^2\) Evidence level 1a

A clinical trial showed that daily intake of 6000 IU of vitamin A during pregnancy did not increase the incidence of fetal malformations.\(^2\)

Conflicting evidence

Potentially teratogenic >10,000 IU per day:\(^3–5\) Evidence level 1b

There is conflicting evidence as to the teratogenicity of vitamin A during pregnancy.\(^5\) A prospective cohort study of 22,748 pregnant women found that 339 had babies with birth defects; 121 of these babies had defects occurring in sites that originated in the cranial neural crest, which are associated with vitamin A teratogenicity.\(^4\) A higher prevalence of cranial neural crest defects was found in women consuming >15,000 IU and >10,000 IU of vitamin A per day than in women consuming only 5000 IU.\(^4\) The increased frequency of defects was concentrated among the babies born to women who had consumed high levels of vitamin A before the seventh week of gestation.\(^4\) Among the babies born to women who took more than 10,000 IU of preformed vitamin A per day in the form of supplements, it was estimated that about 1 infant in 57 had a malformation attributable to the supplement.\(^4\)

Another case–control study of 1,000 live births reported that a teratogenic effect might exist for exposures to high doses of vitamin A (>40,000 IU), particularly during the first three months of pregnancy.\(^3\)

On the other hand, a case–control study on 955 offspring with either major malformations or neural tube defects found no association between periconceptional vitamin A exposure at doses >8000 IU or >10,000 IU per day and malformations in general, cranial neural crest defects, or neural tube defects.\(^6\)

Potentially non-teratogenic at doses >8000 IU or >10,000 IU per day:\(^5,6\) Evidence level 1c

Potential liver toxicity at 25,000 IU/day over long periods:\(^7\) Evidence level 1c
Vitamin A hepatoxicity was reported in 41 patients. The smallest continuous daily consumption leading to cirrhosis was 25,000 IU during six years, whereas higher daily doses (greater than or equal to 100,000 IU) taken during 2.5 years resulted in liver damage.

Retinoic acid

| Teratogenic:8 | Evidence level 1b |
| Retinoic acid syndrome:8 | Evidence level 1b |

Retinoic acid, an analogue of vitamin A, was shown to be teratogenic and led to a characteristic pattern of malformation involving craniofacial, cardiac, thymic, and central nervous system structures called ‘retinoic acid syndrome’. These malformations included microtia/anotia, micrognathia, cleft palate, conotruncal heart defects and aortic arch abnormalities, thymic defects, retinal or optic nerve abnormalities, and central nervous system malformations. The malformations are believed to result from the action of retinoic acid on cranial neural crest cells.

Mother-to-child human immunodeficiency virus (HIV) transmission

Vitamin A 5000 IU and 200,000 IU of β-carotene daily may reduce mother-to-child HIV transmission in preterm births:10	Evidence level 1a
Decreases incidence of preterm delivery:10	Evidence level 1a
Vitamin A 5000 IU daily No effect of preterm delivery:11	Evidence level 1a

A randomized controlled trial of 728 pregnant HIV-positive women found that a daily dose of 5000 IU of vitamin A and 200,000 IU of β-carotene reduced the incidence of preterm delivery. Among the preterm deliveries, newborns born to mothers taking vitamin A were less likely to be infected with HIV.

In a randomized controlled trial of 1075 HIV-positive pregnant women, vitamin A supplementation did not affect newborn death rate or preterm delivery.

Conflicting evidence

May increase mother-to-child HIV transmission:12	Evidence level 1a
No effect on mother-to-child HIV transmission:10,13,14	Evidence level 1a
No effect of HIV immunologic markers (CD4, CD8, and CD3 counts):11	Evidence level 1a
A randomized controlled trial of 1078 HIV-infected pregnant African women found that vitamin A supplementation increased the risk of mother-to-child HIV transmission.12 Two randomized controlled trials, however, one involving 697 HIV-positive pregnant African women and another involving 728 HIV-positive African women, found that vitamin A supplementation (daily dose of 10,000 IU and 5,000 IU, respectively) did not affect mother-to-child HIV transmission.10, 13 In a randomized controlled trial of 1075 HIV-positive pregnant African women, vitamin A supplementation did not affect immunologic markers (CD4, CD8, and CD3 counts) associated with HIV.11

A cohort study of 95 HIV-1-infected pregnant women living in the USA found that vitamin A deficiency was rare in the USA and that serum retinol levels were not associated with risk of vertical HIV-1 transmission.14 The researchers recommended that pregnant HIV-1-infected women living in nations where vitamin A deficiency is not a public health problem should not be advised to take extra vitamin A supplements due to possible teratogenic effects.14

Deficiency

- **Low levels in habitual abortion:** Evidence level 1a

 A study of 40 women with habitual abortions showed that vitamin A levels were significantly lower in women with habitual abortions than in controls.15

Lactation

- **Minimal risk:** Evidence level 1a

 A randomized controlled trial of 100 mothers having uncomplicated deliveries showed that receiving 200,000 IU of vitamin A orally soon after delivery improved vitamin A intake of breast-fed infants during the first three months.16 No adverse effects were reported.16

 Another randomized controlled trial of 220 women showed that a single dose of 200,000 IU of vitamin A at 1–3 weeks post-partum did not result in any adverse effects.17

- **May increase HIV transmission via breastfeeding from HIV-positive mothers:** Evidence level 1a

 A randomized controlled trial of 1078 HIV-positive pregnant women found that vitamin A supplementation increased the risk of HIV breastfeeding transmission.12 The study also found that vitamin A supplementation had no effect on infant mortality by 24 months.12
Potential liver toxicity at 25 000 IU/day over long periods.7

Vitamin A hepatotoxicity was reported in 41 patients.7 The smallest continuous daily consumption leading to cirrhosis was 25 000 IU during six years, whereas higher daily doses (greater than or equal to 100 000 IU) taken during 2.5 years resulted in liver damage.7
VITAMIN D

Pregnancy

Not enough evidence to evaluate: Evidence level 1a

A systematic review was conducted to assess the effects of vitamin D supplementation on pregnancy outcome. Two trials involving 232 women were included in this study where in one trial the mothers had higher mean daily weight gain and lower number of low-birthweight infants, and in the other trial the supplemented group had lower birthweights. The researchers concluded that there is not enough evidence to evaluate the effects of vitamin D supplementation during pregnancy.

Minimal risk: Evidence level 1a

A randomized controlled trial was conducted to evaluate the effects of single-dose (5 mg at the seventh month) and daily vitamin D supplementation (1000 IU/day) in pregnant women during the last trimester. No adverse effects or significant modification of maternal calciuria or of the birthweight of term infants were observed.

A randomized controlled trial of 30 low-birthweight infants, 35 infants with perinatal asphyxia, and 16 infants of diabetic mothers showed no adverse effects associated with vitamin D supplementation.

Crosses the placenta: Evidence level 4

According to one study, the fetus is entirely dependent on the mother for its supply of vitamin D (25 hydroxyvitamin D) which is believed to easily cross the placenta.

Minimal risk when used below 2000 IU (50 \(\mu \)g) per day: Evidence level 4

According to the Institute of Medicine, vitamin D is safe during pregnancy when used in amounts below 2000 IU (50 \(\mu \)g) per day.

Risk of hypercalcemia at >2000 IU (50 \(\mu \)g) per day: Evidence level 4

According to the Institute of Medicine, daily intake of vitamin D above 2000 IU (50 \(\mu \)g) may lead to hypercalcemia. In pregnancy, hypercalcemia can lead to suppression of parathyroid hormone, hypocalcemia, tetany, seizures, aortic valve stenosis, retinopathy, and mental and/or physical retardation in the infant.

Deficiency

May develop hypocalcemia: Evidence level 1b
In a study of 120 pregnant women, 75 women who did not take any vitamin D supplements during pregnancy showed statistically significant hypocalcemia, hypophosphatemia and elevation of heat-labile alkaline phosphatase (HLAP).24

Lactation

Minimum intake of 200 IU per day for infant:25 Evidence level 4

According to the National Academy of Sciences, it is recommended that all infants, including those who are exclusively breast-fed, have a minimum intake of 200 IU of vitamin D per day beginning during the first two months of life.25 In addition, it is recommended that an intake of 200 IU of vitamin D per day be continued throughout childhood and adolescence, because adequate sunlight exposure is not easily determined for a given individual.25

Minimal risk when used below 2000 IU (50 \(\mu \text{g} \)) per day:22 Evidence level 4

According to the Institute of Medicine, vitamin D is safe during lactation when used in amounts below 2000 IU (50 \(\mu \text{g} \)) per day.23

Risk of hypercalcemia at >2000 IU (50 \(\mu \text{g} \)) per day:23 Evidence level 4

According to the Institute of Medicine, daily intake of vitamin D above 2000 IU (50 \(\mu \text{g} \)) may lead to hypercalcemia.23
VITAMIN E

Pregnancy

<table>
<thead>
<tr>
<th>Effect</th>
<th>Evidence Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimal risk at 400 IU per day:</td>
<td>1a</td>
</tr>
<tr>
<td>May prevent preeclampsia (with vitamin C):</td>
<td>1a</td>
</tr>
</tbody>
</table>

A randomized controlled trial on the effect of supplementation with vitamin E and C in 283 pregnant women with preeclampsia showed no adverse effects with daily doses of 400 IU of vitamin E at weeks 16–22 of gestation. The combination of vitamin E and C was also shown to be beneficial in the prevention of preeclampsia.

<table>
<thead>
<tr>
<th>Effect</th>
<th>Evidence Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spontaneous abortion associated with blood levels above 0.50 mg/100 mL:</td>
<td>1b</td>
</tr>
</tbody>
</table>

In a group of 50 spontaneously aborting women compared with the same number of pregnant women whose pregnancies terminated uneventfully, a significantly higher percentage of aborting women had individual values of serum \(\alpha \)-tocopherol above the 0.50 mg/100 mL normal limit.

<table>
<thead>
<tr>
<th>Effect</th>
<th>Evidence Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decreases malformations:</td>
<td>3</td>
</tr>
</tbody>
</table>

Maternal dietary treatment with vitamin E markedly reduced the severity of malformations in diabetic rats.

<table>
<thead>
<tr>
<th>Effect</th>
<th>Evidence Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-teratogenic</td>
<td>3</td>
</tr>
<tr>
<td>Non-mutagenic</td>
<td>3</td>
</tr>
<tr>
<td>Non-carcinogenic</td>
<td>3</td>
</tr>
<tr>
<td>Few side effects at high doses in humans:</td>
<td>4</td>
</tr>
</tbody>
</table>

Animal studies have shown that vitamin E does not have mutagenic, teratogenic nor carcinogenic properties. In human studies, oral vitamin E supplementation resulted in few side effects even at doses as high as 3200 mg/day.

<table>
<thead>
<tr>
<th>Effect</th>
<th>Evidence Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large doses may enlarge liver:</td>
<td>3</td>
</tr>
</tbody>
</table>

Pregnant rats receiving large doses of vitamin E (22.5–2252 mg/kg per day) had larger livers, higher levels of lipids and vitamin E in plasma, and higher concentrations of vitamin E in the livers than did controls. The researchers reported no obvious teratogenic effects in the newborn young of the vitamin E-supplemented rats, although some eye abnormalities were seen in the older pups of rats given extremely high amounts of the vitamin. The survival rate, weight of the pups, and litter size were unaffected by vitamin E supplementation.
According to a compendium on the safety of drugs during pregnancy and lactation, no adverse effects were reported with oral intake of 600–900 IU of vitamin E daily during the last two months of pregnancy.34

Deficiency

Low levels in habitual abortion:15 Evidence level 1b

A study of 40 women with habitual abortion (HA) and controls showed that vitamin E levels were significantly lower in women with HA than in controls.15

Lactation

Crosses into breast milk:33,35 Evidence level 1c

Orally administered α-tocopherol (1.1 g) reached a maximum value of 414 μg/100 g in human breast milk, which was 6.6-fold the pre-supplemental level, after three days and declined to the base line level after five days.35 A case study of a pregnant women mega-dosing vitamin E showed breast milk vitamin E levels more than three times the upper range of normal.36 No adverse effects were reported.36 In a study of pregnant rats receiving large doses of vitamin E (22.5–2252 mg/kg per day), mammary transfer of vitamin E was found to be quite efficient.33

Does not interfere with milk production:31,37–39 Evidence level 3

Does not adversely affect milk composition:33,37–39 Evidence level 3

There are numerous animal studies on the transfer of vitamin E into breast milk and vitamin E supplementation in cattle. None of these studies reported that vitamin E supplementation interfered with milk production or negatively affected milk composition.33,37–39
VITAMIN K

Pregnancy

<table>
<thead>
<tr>
<th>Event</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemolytic disease of the newborn</td>
<td>1a</td>
</tr>
<tr>
<td>Improves indices of coagulation</td>
<td>1a</td>
</tr>
<tr>
<td>A systematic review concluded that a single dose (1.0 mg) of intramuscular vitamin K after birth is effective in the prevention of classic hemolytic disease of the newborn. Either intramuscular or oral (1.0 mg) vitamin K prophylaxis improves biochemical indices of coagulation status at 1–7 days.</td>
<td></td>
</tr>
<tr>
<td>Does not prevent periventricular hemorrhage in preterm infants</td>
<td>1a</td>
</tr>
<tr>
<td>A systematic review found that vitamin K administered to women at risk of imminent preterm birth did not significantly prevent periventricular hemorrhage in preterm infants.</td>
<td></td>
</tr>
<tr>
<td>In preterm pregnancies, slow and limited placental transport</td>
<td>1a</td>
</tr>
<tr>
<td>A randomized controlled trial of 78 women with preterm pregnancies showed that vitamin K₁ crosses the placenta slowly and to a limited degree.</td>
<td></td>
</tr>
<tr>
<td>In low birthweight and <32 weeks’ gestation infants, supplementation during pregnancy may not affect coagulation parameters</td>
<td>1b</td>
</tr>
<tr>
<td>A prospective cohort study of 33 women showed that maternal supplementation with vitamin K₁ had no significant effect on the level of vitamin K₁-dependent factors in low birthweight and <32 weeks’ gestation infants.</td>
<td></td>
</tr>
</tbody>
</table>

Conflicting evidence

<table>
<thead>
<tr>
<th>Event</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>No association with acute lymphoblastic leukemia or cancer</td>
<td>1b</td>
</tr>
<tr>
<td>Potential risk of acute lymphoblastic leukemia or cancer with intramuscular vitamin K</td>
<td>1b</td>
</tr>
<tr>
<td>Minimal risk of cancer with oral vitamin K</td>
<td>1b</td>
</tr>
<tr>
<td>A cohort study of 177 cases and 354 age- and sex-matched controls showed no relation between childhood acute lymphoblastic leukemia and neonatal admin-</td>
<td></td>
</tr>
</tbody>
</table>
istration of intramuscular vitamin K. A case–control study found no significant association between parenteral vitamin K prophylaxis and leukemia or tumors. Another case–control study of 54,795 children born from 1959 through 1966 found no association between exposure to vitamin K and an increased risk of any childhood cancer or of all childhood cancers combined.

A retrospective case–control study on 16,193 infants delivered in Great Britain in one week of April 1970 showed an association between cancer incidence and the prophylactic administration of vitamin K. A cohort study of 195 children diagnosed with cancer from 1971 to 1991, matched with 558 controls, found a significant association with intramuscular vitamin K and cancer when compared with oral vitamin K or no vitamin K therapy. There was no significant increase in risk for children who had been given oral vitamin K when compared with no vitamin K. The researchers concluded that the prophylactic benefits against hemorrhagic disease are unlikely to exceed the potential adverse effects from intramuscular vitamin K. A review article reported that vitamin K administration to newborns may increase the risk of acute lymphoblastic leukemia in childhood.

<table>
<thead>
<tr>
<th>Poor transport to the fetus:</th>
<th>Evidence level 2</th>
</tr>
</thead>
</table>

Intravenous injection of vitamin K into mothers was shown to be actively incorporated into placental tissue, while transfer of vitamin K to fetal blood (cord blood) was small. An in vitro investigation of vitamin K transport using human placental villous tissues found that the transport of vitamin K into the fetus is not especially pronounced, but transport into the placental villous tissue is comparatively good.

<table>
<thead>
<tr>
<th>Non-mutagenic:</th>
<th>Evidence level 3</th>
</tr>
</thead>
</table>

High concentrations of vitamin K did not induce primary DNA damage in cells from rat embryos grown in vitro.

<table>
<thead>
<tr>
<th>Minimal risk:</th>
<th>Evidence level 4</th>
</tr>
</thead>
</table>

According to the Food and Nutrition Board, Institute of Medicine, there is no evidence to suggest that vitamin K intake for pregnant women should be different to that for non-pregnant women.

Deficiency

<table>
<thead>
<tr>
<th>Vitamin K deficiency bleeding:</th>
<th>Evidence level 1b</th>
</tr>
</thead>
</table>

A stratified cluster sampling of 28,156 live newborns from five districts and six counties in China found that vitamin K deficiency bleeding (VKDB) was 3.27
Anti-convulsant therapy may cause deficiency.55 Evidence level 1c

A multicenter observational case–control study of 25 pregnant women receiving anti-convulsant therapy and 25 pregnant controls found that the incidence of vitamin K deficiency was increased in neonates exposed to anti-convulsant drugs prenatally.55

May be secondary to hyperemesis gravidum.56 Evidence level 2

A case of a woman at 15 weeks gestation with hyperemesis gravidarum complicated by an episode of severe epistaxis was associated with a coagulopathy secondary to vitamin K deficiency.56 The coagulopathy resolved after vitamin K replacement.56

Lactation

Breast-fed infants appear to be vitamin K deficient up to three months after birth.57,58 Evidence level 1b

In comparison with bottle-fed infants, breast-fed infants appear to be vitamin K deficient from 1 to 3 months after birth.57,58 Breast-fed infants receiving no vitamin K at birth were more deficient in vitamin K at 3 months than breast-fed infants having received vitamin K prophylaxis.58 Based on these results, routine vitamin K prophylaxis after birth for all breast-fed infants was recommended.58

Continuous menaquinone-4 (MK-4) administration increases vitamin K in breast milk: Evidence level 1b

In an outcome study of 60 puerperal women, the continuous administration of MK-4 to mothers was shown to increase the concentration of vitamin K in milk, preventing idiopathic vitamin K deficient bleeding in infants.59 MK-4 was shown to be accumulated and concentrated into breast milk.59

Phylloquinone administration may not affect breast milk concentration60

In a longitudinal study of 23 lactating mothers, there was no significant correlation between phylloquinone intake and breast milk concentration at 6, 12, and 26 weeks.60

Low levels in breast milk61–63 Evidence level 1c

Vitamin K is present in very low concentrations in human milk.62 A cross-sectional study of 15 mothers from day 1 to 6 months post-partum showed that
vitamin K levels between colostrum and mature milk at 6 months were not statistically significant. Because of significantly increased volumes of milk over the lactation period, however, approximately twice as much vitamin K was delivered in mature milk than in colostrum. Based on these results, the researchers concluded that vitamin K in human milk is insufficient to meet recommended intakes for infants aged less than 6 months.

<table>
<thead>
<tr>
<th>Evidence level 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breast-fed infants may be at risk of late onset hemorrhagic disease of the newborn.</td>
</tr>
</tbody>
</table>

Four cases of infants with acute bleedings due to vitamin K deficiency beyond the neonatal period were reported. Two of these infants had intracranial hemorrhages and died. All infants were breast-fed, born appropriate for date and did not receive vitamin K prophylaxis. In a different study, another four cases of hemorrhage in breast-fed infants were reported. In all cases, the infants were males, between 4 and 6 weeks old and in two of these cases, hemorrhage in the central nervous system was involved. There was a prompt improvement after administration of vitamin K.

<table>
<thead>
<tr>
<th>Evidence level 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crosses into breast milk:</td>
</tr>
</tbody>
</table>

Intravenous injection of vitamin K into mothers was shown to increase the release of vitamin K into milk with time even after the plasma vitamin K concentration in maternal blood decreased.

<table>
<thead>
<tr>
<th>Evidence level 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-mutagenic:</td>
</tr>
</tbody>
</table>

High concentrations of vitamin K did not induce primary DNA damage in cells from rat embryos grown in vitro.

<table>
<thead>
<tr>
<th>Evidence level 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimal risk:</td>
</tr>
</tbody>
</table>

According to the Food and Nutrition Board, Institute of Medicine, there is no evidence to suggest that vitamin K intake for breast-feeding women should be different from that of nonbreast-feeding women.

Oral administration to infants

<table>
<thead>
<tr>
<th>Evidence level 1b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prevents vitamin K deficiency bleeding in healthy breast-fed infants:</td>
</tr>
</tbody>
</table>

A prospective clinical trial found that 1 mg per week or 25 µg per day of vitamin K proved to be effective in preventing vitamin K deficiency bleeding in healthy breast-fed infants. The oral administration of vitamin K 1 mg, repeated weekly during the first three months of life, was shown to offer complete protection against vitamin K deficiency in 48 healthy breast-fed infants and did not result in an accumulation of vitamin K in the blood.
FOLIC ACID

Pregnancy

- Improves hemoglobin levels and folate status: Evidence level 1a
- Prevents neural tube defects: Evidence level 1a
- Prevents recurrence of neural tube defects in woman with one child with neural tube defects: Evidence level 1a

The United States Food and Drug Administration (FDA) recommends folic acid supplementation at 800 µg daily in order to reduce the risk of neural tube defects. A randomized controlled trial of 293 women found that a fortification program that delivered between 200 and 400 µg of folic acid daily to women would protect against neural tube defects.

A randomized controlled trial of 111 women who had one child with a neural tube defect found that 4 mg of folic acid a day before and during early pregnancy prevented the recurrence of neural tube defects.

Folic acid supplements may be more effective than increased dietary folic acid intake: Evidence level 1a

A randomized controlled trial of 62 women showed that compared with folic acid supplements and fortified foods, consumption of extra folic acid-containing natural food was relatively ineffective at increasing folic acid status. The researchers concluded that the advice to women to consume folic acid-rich foods as a means of optimizing folic acid status is misleading.

Deficiency

- Low folic acid levels may be a risk factor for Down syndrome: Evidence level 1b
- Elevated homocysteine levels associated with recurrent spontaneous miscarriages: Evidence level 1b
- Reduces plasma homocysteine levels: Evidence level 1a
A cohort study of 40 women with unexplained fetal loss showed an association with elevated serum homocysteine levels. Homocysteine levels can be safely reduced with folic acid, vitamin B\textsubscript{6} and vitamin B\textsubscript{12}.74-76

| Elevated homocysteine levels associated with placental abruption or infarction: | Evidence level 1b |

A cohort study of 84 women with placental abruption or infarction and of 46 women with normal pregnancy outcome showed elevated homocysteine levels were associated with placental abruption or infarction. Homocysteine levels can be safely reduced with folic acid, vitamin B\textsubscript{6} and vitamin B\textsubscript{12}.74-76

Lactation

- Folic acid levels can be depleted in the mother during lactation: Evidence level 1a
- Breast milk folic acid levels may decline postpartum: Evidence level 1a
- Plasma homocysteine levels may increase postpartum in women not taking folic acid supplements: Evidence level 1a

A double-blind, randomized, longitudinal study of 42 lactating women found that a dietary folate intake of approximately 380 µg daily may not be sufficient to prevent mobilization of maternal folate stores during lactation. In women not taking folic acid supplements, breast milk folic acid decreased and plasma homocysteine increased.78

| >300 µg daily of folic acid may prevent folic acid decline in adolescent pregnancies: | Evidence level 1a |

A randomized controlled trial of 71 breast-feeding adolescents (14–19 years) showed that 300 µg daily of folic acid was sufficient to prevent a postpartum decline in folic acid.79
VITAMIN B₆

Pregnancy

Reduces dental decay during pregnancy: Evidence level 1a

A systematic review on the effects of vitamin B₆ supplementation during pregnancy and labor found that vitamin B₆ supplementation was associated with decreased incidence of dental decay in pregnant women.

Reduces nausea and vomiting of pregnancy: Evidence level 1a

A randomized controlled trial of 59 pregnant women found that 25 mg of vitamin B₆ taken orally every 8 hours for 72 hours was effective in reducing the nausea and vomiting of pregnancy. Another randomized controlled trial of 342 pregnant women receiving 30 mg per day of vitamin B₆ found that vitamin B₆ was effective in reducing the severity of nausea during pregnancy.

A randomized controlled trial of 138 pregnant women found that vitamin B₆ given in combination with ginger was effective in reducing nausea and vomiting during pregnancy.

Non-teratogenic: Evidence level 1b

Reduces congenital cardiovascular malformations: Evidence level 1b

A cohort study was conducted on 22,843 pregnant women with newborns or fetuses with congenital abnormalities and 38,151 matched controls of pregnant women who had newborn infants without any congenital abnormalities. Treatment with vitamin B₆ during pregnancy was found to be of non-teratogenic risk to the fetus, but may provide some protective effect for cardiovascular malformations.

Improves oxygenation of newborn at delivery: Evidence level 1b

A loading dose of vitamin B₆ (intramuscularly or per os) improved oxygen transport function of the newborn’s blood when given to 24 non-supplemented pregnant women at term.

High doses may cause neonatal seizures: Evidence level 2

There is some concern that high-dose maternal vitamin B₆ can cause neonatal seizures. There have been anecdotal reports of neonatal seizures after use of vitamin B₆ by the mother for hyperemesis. High-dose vitamin B₆ has also been shown to have a proconvulsant effect in mice and rats.
Deficiency

<table>
<thead>
<tr>
<th>Deficiency</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deficiency of vitamin B₆ may lead to slow growth in exclusively breast-fed infants</td>
<td>1b</td>
</tr>
<tr>
<td>An outcome study of 44 infants who were exclusively breast-fed for 6 months showed that low vitamin B₆ status was associated with reduced gain in length.</td>
<td></td>
</tr>
<tr>
<td>Elevated homocysteine levels associated with recurrent spontaneous miscarriages</td>
<td>1b</td>
</tr>
<tr>
<td>A cohort study of 40 women with unexplained fetal loss showed an association with elevated serum homocysteine levels. Homocysteine levels can be safely reduced with folic acid, vitamin B₆, and vitamin B₁₂.</td>
<td></td>
</tr>
<tr>
<td>Elevated homocysteine levels associated with placental abruption or infarction</td>
<td>1b</td>
</tr>
<tr>
<td>A cohort study of 84 women with placental abruption or infarction and of 46 women with normal pregnancy outcome showed elevated homocysteine levels were associated with placental abruption or infarction. Homocysteine levels can be safely reduced with folic acid, vitamin B₆ and vitamin B₁₂.</td>
<td></td>
</tr>
<tr>
<td>Deficiency may be associated with oral lesions</td>
<td>1b</td>
</tr>
<tr>
<td>A comparative study of two groups of pregnant women of low socioeconomic status found an association between oral lesions and vitamin B₆ deficiency during pregnancy.</td>
<td></td>
</tr>
<tr>
<td>Deficiency may be associated with lower APGAR scores</td>
<td>1b</td>
</tr>
<tr>
<td>A cohort study of 127 low-income pregnant adolescent and adult women found lower APGAR scores in infants whose mothers were vitamin B₆ deficient than those with adequate vitamin B₆ status.</td>
<td></td>
</tr>
</tbody>
</table>

Lactation

<table>
<thead>
<tr>
<th>Lactation</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimal risk</td>
<td>1b</td>
</tr>
<tr>
<td>A cohort study of 47 healthy full-term infants found that maternal supplementation of 2.5 mg/day of vitamin B₆ provided an adequate amount of vitamin B₆ in breast milk for the growth of breast-fed infants.</td>
<td></td>
</tr>
<tr>
<td>Exclusive breast-feeding without vitamin B₆ supplementation may lead to deficiency after 6 months</td>
<td>1b</td>
</tr>
</tbody>
</table>
On cohort study of 118 nursing women found that by 6 months of exclusive breast-feeding, 30% of cases of low vitamin B₆ status in nursing mothers were reflected in their infants. The study concluded that for some infants, human milk alone, without supplementary foods, may be insufficient to meet vitamin B₆ needs after 6 months of age.

<table>
<thead>
<tr>
<th>Does not interfere with breast milk production:⁹⁸,⁹⁹</th>
<th>Evidence level 1b</th>
</tr>
</thead>
<tbody>
<tr>
<td>May suppress plasma prolactin:⁹⁸</td>
<td>Evidence level 1b</td>
</tr>
</tbody>
</table>

An outcome study of 20 lactating women showed that although vitamin B₆ may suppress plasma prolactin, vitamin B₆ supplementation did not interfere with breast milk production.⁹⁸ An observational study of 11 full-term infants found that supplemental B₆ during pregnancy in ordinary doses does not have an antilactogenic effect.⁹⁹

| Vitamin B₆ crosses into breast milk:⁹⁹ | Evidence level 1b |

An observational study of 11 full-term infants found that vitamin B₆ was transported into breast milk.⁹⁹

References

Herbal medicines

322 Herbal medicines

91. Dolina S, Peeling J, Sutherland G, Pillay N, Greenberg A. Effect of sustained pyri-
doxine treatment on seizure susceptibility and regional brain amino acid levels in genetically epilepsy-prone BALB/c mice. Epilepsia 1993; 34:33–42.

Chapter 6
SUPPLEMENTS

The use of supplements is fairly widespread among the general public. Over-the-counter use of supplements is most common for joint support (arthritis and arthralgia), depression, insomnia, seasonal allergies, and so on.

For this chapter, we selected 10 supplements that are more commonly used by the general public. Our assumption is that given their frequency of use, pregnant and lactating mothers would likely continue administrating these supplements throughout gestation and lactation.

Each of the nine supplement monographs are outlined as follows.

Supplement name
The name of the supplement, e.g. glucosamine sulfate.

Description
A brief description of the supplement, where it is derived from and what type of constituent it is (oil, amino acid, flavonoid).

Main indications
The main therapeutic indications for this herb. According to evidence-based medicine principles, the indications for this herb have been evaluated based on grades/levels of evidence (see Chapter 3).

Pregnancy
The safety of this herb during pregnancy. According to evidence-based medicine principles, the safety of this herb during pregnancy has been evaluated based on grades/levels of evidence (see Chapter 3).

Lactation
The safety of this herb during lactation. According to evidence-based medicine principles, the safety of this herb during lactation has been evaluated based on grades/levels of evidence (see Chapter 3).
METHYL-SULFONYL-METHANE
Methyl-sulfonyl-methane (MSM) is a naturally occurring compound found in plants, algae and human milk.\(^1\) MSM is an odorless metabolite of dimethyl sulfoxide (DMSO) and a source of sulfur for cysteine and methionine.\(^2\)

Main indications

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hayfever:(^1)</td>
<td>Evidence grade C</td>
</tr>
<tr>
<td>Joint disorders:</td>
<td>Evidence grade E</td>
</tr>
</tbody>
</table>

\(^8\)MSM is frequently used in the treatment of joint disorders and is often used in combination with glucosamine sulfate. Preliminary research shows that MSM inhibits degenerative changes in arthritic joints.\(^3\)

Pregnancy

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unknown:</td>
<td>Evidence level 5</td>
</tr>
</tbody>
</table>

Although the safety of MSM during pregnancy is unknown, it should be noted that there were no reports in the evidence-based medical literature of MSM supplementation associated with abortion, teratogenicity, mutagenicity, uterine stimulation, menstrual stimulation (emmenagogue) or hormonal (estrogen, progesterone) activity.

Lactation

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unknown:</td>
<td>Evidence level 5</td>
</tr>
</tbody>
</table>

Although the safety of MSM is unknown during lactation, it should be noted that there are no reports in the evidence-based medical literature of MSM supplementation associated with decreased lactation, hormonal activity, or mutagenicity.
GLUCOSAMINE SULFATE

Glucosamine sulfate is an amino sugar with a sulfate group attached. Glucosamine sulfate is a constituent of cartilage proteoglycans and can be synthetically derived or derived from marine exoskeletons.4

Main indications

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knee osteoarthritis:5</td>
<td>A</td>
</tr>
<tr>
<td>Osteoarthritis:6</td>
<td>A</td>
</tr>
</tbody>
</table>

Pregnancy

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avoid:7</td>
<td>4</td>
</tr>
<tr>
<td>Unknown:</td>
<td>5</td>
</tr>
</tbody>
</table>

A natural products evidence-based database reported that glucosamine sulfate should be avoided in pregnancy and in women wishing to become pregnant.7 The database does not provide an explanation for this caution.7 Although the safety of glucosamine during pregnancy is unknown, it should be noted that there were no reports in the evidence-based medical literature of glucosamine supplementation associated with abortion, teratogenicity, mutagenicity, uterine stimulation, menstrual stimulation (emmenagogue), or hormonal (estrogen, progesterone) activity.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use with caution in gestational diabetes:</td>
<td>4</td>
</tr>
<tr>
<td>Does not affect type 2 diabetes mellitus:8</td>
<td>1a</td>
</tr>
<tr>
<td>Does not affect insulin sensitivity:9</td>
<td>1a</td>
</tr>
</tbody>
</table>

Although the research indicates that glucosamine does not affect blood sugar metabolism in people with type 2 diabetes and does not affect insulin sensitivity, it should be used with caution until more is known of its effects during gestational diabetes.

A randomized controlled trial of people with type 2 diabetes demonstrated that oral glucosamine sulfate supplementation does not result in clinically significant alterations in glucose metabolism.8 A randomized controlled trial on 18 healthy subjects showed that glucosamine supplementation did not affect the regulation of insulin sensitivity in humans.9

Lactation

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uptake by mammary glands:10</td>
<td>3</td>
</tr>
</tbody>
</table>
Intravenous infusion of glucosamine through the jugular vein of a lactating cow lead to the isolation of lactosamine. The researchers concluded that these results showed the uptake of glucosamine in bovine mammary gland, and also indicated that a part of glucosamine was metabolized to the product lactosamine. No adverse effects were reported with respect to glucosamine administration.

Despite this study, there are no reports in the evidence-based medical literature of glucosamine supplementation being either safe or contraindicated during lactation. As such, the safety of glucosamine sulfate during lactation is unknown.
QUERCETIN
Quercetin is a dietary bioflavonoid found in many plants.¹¹

Main indications

<table>
<thead>
<tr>
<th>Indication</th>
<th>Evidence grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prostatitis</td>
<td>B2</td>
</tr>
<tr>
<td>Hayfever*:</td>
<td>E</td>
</tr>
</tbody>
</table>

* Quercetin is frequently used in the treatment of seasonal allergies. In vitro studies have shown that quercetin reduces histamine release from nasal scrapings by 46% to 96%.¹²

Pregnancy

<table>
<thead>
<tr>
<th>Indication</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uterine relaxant:</td>
<td>3</td>
</tr>
<tr>
<td>Anti-estrogenic activity:</td>
<td>3</td>
</tr>
<tr>
<td>Non-teratogenic:</td>
<td>3</td>
</tr>
<tr>
<td>May lower fetus body weight:</td>
<td>3</td>
</tr>
</tbody>
</table>

In the rat uterus, quercetin was shown to relax the tonic contractions induced by potassium chloride.¹³

Quercetin was shown have anti-estrogenic activity where it inhibited growth in cultures of breast cancer cells.¹⁴ Quercetin was also shown to act as a potent inhibitor of estrone sulfatase in vitro and thus has the potential to express anti-estrogenic activity in vivo by decreasing estrogenic production in human liver cells.¹⁵

Doses of up to 2000 mg/kg of quercetin were administered to pregnant rats on the morning of day 9 of gestation.¹⁷ On day 20 of gestation, some quercetin-treated groups showed a significant decrease in the average weight of the fetuses compared with the corresponding control weight.¹⁷ The fetuses recovered on day 20 of gestation and failed to reveal any reproducible dose-related syndrome of teratogenic effects attributable to quercetin treatment.¹⁷

Quercetin was shown to enhance the survival of purified rat spinal embryonic motor neurons after they have been sampled.¹⁸

Quercetin was shown to inhibit the enzyme Ca²⁺-activated ATPase in the mouse chorioallantoic placenta, thereby affecting transplacental calcium transport during mouse embryonic development.¹⁹
At doses of up to 400 mg/kg, quercetin did not induce any postimplantation losses in mice and rats, thereby a reliable measure of non-lethal mutagenic activity.20 In male mice, however, there was a profound reduction in fertility at 300 mg/kg and 400 mg/kg of quercetin; this relation was not observed in male rats.20 The researchers hypothesized that the loss of fertility could be due to germinal cytotoxicity, oligospermia, or impairment of fertilizing ability by quercetin.20

May interfere with tissue proliferation in the uterus:21 Evidence level 3

In rats, quercetin was shown to interfere with a protein kinase enzyme responsible for tissue proliferation in the uterus.21

Lactation

Blocks binding of prolactin:22 Evidence level 3

Quercetin was shown to block prolactin action on milk protein genes in the mammary gland.22

May interfere with growth of mammary gland cells:21,23 Evidence level 3

Quercetin was shown to inhibit the activity of a protein kinase enzyme responsible for the growth of mammary gland cells in lactating mice.21,23
5-HYDROXYTRYPTOPHAN

5-Hydroxytryptophan (5-HTP) is an amino acid that readily crosses the blood–brain barrier and increases central nervous system (CNS) synthesis of serotonin.24

Main indications

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depression:24</td>
<td>A</td>
</tr>
<tr>
<td>Fibromyalgia:25</td>
<td>B2</td>
</tr>
</tbody>
</table>

Pregnancy

<table>
<thead>
<tr>
<th>Effect</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increases serum levels of prolactin:26</td>
<td>1b</td>
</tr>
</tbody>
</table>

Oral administration of 5-HTP in 10 obese but otherwise healthy women was shown to increase serum levels of prolactin.26 During pregnancy and lactation, prolactin levels normally increase.27 High levels of prolactin, as in the case of hyperprolactinemia, may be associated with reproductive dysfunctions due to menstrual irregularities and amenorrhea.28

<table>
<thead>
<tr>
<th>Effect</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>May contain impurities associated with eosinophilia-myalgia syndrome:29</td>
<td>2</td>
</tr>
</tbody>
</table>

The United States Food and Drug Administration (FDA) reported that an impurity known as ‘Peak X’ was identified in dietary supplements containing 5-HTP.29 In 1991, one case of eosinophilia-myalgia syndrome (EMS) was associated with 5-HTP.29 EMS is a serious systemic illness characterized by elevations of certain white blood cells and severe muscle pain.29

<table>
<thead>
<tr>
<th>Effect</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increases fetal breathing movement:30,31</td>
<td>3</td>
</tr>
<tr>
<td>5-HTP was shown to prolong high-voltage electrocortical activity and increase the incidence of fetal breathing movements in animals.30,31</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Effect</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unknown:</td>
<td>5</td>
</tr>
</tbody>
</table>

Although the safety of 5-HTP during pregnancy is unknown, it should be noted that there were no reports in the evidence-based medical literature of 5-HTP supplementation associated with abortion, teratogenicity, mutagenicity, uterine stimulation, menstrual stimulation (emmenagogue), or hormonal (estrogen, progesterone) activity.

Lactation

<table>
<thead>
<tr>
<th>Effect</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increases serum levels of prolactin:26</td>
<td>1b</td>
</tr>
</tbody>
</table>

Herbal medicines

Oral administration of 5-HTP in 10 obese but otherwise healthy women was shown to increase serum levels of prolactin. During pregnancy and lactation, prolactin levels normally increase.

There are no reports in the evidence-based medical literature of 5-HTP supplementation being either safe or contraindicated during lactation.
COENZYME Q-10
Coenzyme Q-10 (Co Q-10) is fat soluble and a vitamin-like compound that is present in all cells and membranes and in addition to being a member of the mitochondrial respiratory chain.\(^{32}\)

Main indications

<table>
<thead>
<tr>
<th>Condition</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Congestive heart failure:</td>
<td>Evidence grade A</td>
</tr>
<tr>
<td>Hypertension:</td>
<td>Evidence grade B2</td>
</tr>
</tbody>
</table>

Pregnancy

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unknown:</td>
<td>5</td>
</tr>
</tbody>
</table>

Although the safety of Co Q-10 during pregnancy is unknown, it should be noted that there were no reports in the evidence-based medical literature of Co Q-10 supplementation associated with abortion, teratogenicity, mutagenicity, uterine stimulation, menstrual stimulation (emmenagogue) or hormonal (estrogen, progesterone) activity.

Blood levels

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low serum levels associated with abortion:</td>
<td>1b</td>
</tr>
<tr>
<td>A cohort study of 483 pregnancies found that low levels of Co Q-10 in maternal blood were observed in spontaneous abortions, in threatened late abortions, and in threatened preterm deliveries. The authors concluded that Co Q-10 was a marker of pathological uterine contractile activity.(^{38})</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low serum levels associated with preeclampsia:</td>
<td>1b</td>
</tr>
<tr>
<td>Two cohort study showed that during preeclampsia, there is a significant decrease in plasma levels of Co Q-10 compared with normal pregnant women.(^{39,40})</td>
<td></td>
</tr>
</tbody>
</table>

Lactation

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unknown:</td>
<td>5</td>
</tr>
</tbody>
</table>

There are no reports in the evidence-based medical literature of Co Q-10 supplementation being either safe or contraindicated during lactation.
BROMELAIN

Bromelain is a natural proteinase preparation derived from the stem of the pineapple.41

Main indications

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breast engorgement during lactation (with trypsin)</td>
<td>A</td>
</tr>
<tr>
<td>Knee osteoarthritis</td>
<td>C</td>
</tr>
<tr>
<td>Ankylosing spondylitis</td>
<td>C</td>
</tr>
</tbody>
</table>

Pregnancy

Bromelain

- Unknown: Evidence level 5
- Estrogenic47 Evidence level 4

Although the safety of bromelain during pregnancy is unknown, it should be noted that there were no reports in the evidence-based medical literature of bromelain supplementation associated with abortion, teratogenicity, mutagenicity, uterine stimulation, menstrual stimulation (emmenagogue), or hormonal (estrogen, progesterone) activity.

Pineapple

- Emmenagogue:46 Evidence level 4
- Potential abortifacient:46 Evidence level 4

With respect to pineapple, however, a review article on the potential value of plants as sources of anti-fertility agents reported that the leaf, fruit and juice of pineapple were emmenagogues and potential abortifacients, and that they had estrogenic activity.46,47

Intravaginal use

<table>
<thead>
<tr>
<th>Effect</th>
<th>Evidence Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>May dilate cervical canal</td>
<td>1c</td>
</tr>
<tr>
<td>Avoid intravaginal use</td>
<td>1c</td>
</tr>
</tbody>
</table>

Through radiographic observation, intravaginal use of bromelain was shown to dilate and widen the cervical canal and to soften the cervix.48 Two studies reported that the mucolytic activity of bromelain could be useful in cleaning the mucus plug in the cervical os to get better radiographs during cervicozystero-
grams.49,50 Although not stated by the researchers, dilation of the cervix and dissolution of the cervical plug when bromelain is used intravaginally may adversely affect pregnancy outcome.

\textbf{Lactation}

\begin{tabular}{|l|}
\hline
Minimal risk:42 & Evidence level 1a \\
\hline
\end{tabular}

A systematic review was conducted on the efficacy of various treatments to relieve symptoms of breast engorgement among breast-feeding women.42 In combination with trypsin, bromelain was shown to significantly improve symptoms of breast engorgement.42 No adverse effects were reported with respect to taking bromelain during lactation.42
FISH OILS

Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)
EPA and DHA are long-chain n-3 polyunsaturated fatty acids that are found in the tissues of marine mammals and oily fish.4

Main indications

<table>
<thead>
<tr>
<th>Indication</th>
<th>Evidence grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyperlipidemia:51,52</td>
<td>A</td>
</tr>
<tr>
<td>Heart disease prevention:53</td>
<td>A</td>
</tr>
<tr>
<td>Hypertension:54</td>
<td>A</td>
</tr>
</tbody>
</table>

Pregnancy

<table>
<thead>
<tr>
<th>Indication</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimal risk:55–58</td>
<td>1a</td>
</tr>
</tbody>
</table>

A double-blind randomized controlled study of 590 pregnant women (19–35 years old) in weeks 17–19 of pregnancy showed no harmful effects of maternal supplementation with fish oils regarding pregnancy outcome, cognitive development, or growth.58

<table>
<thead>
<tr>
<th>Indication</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longer gestational length:58</td>
<td>1a</td>
</tr>
<tr>
<td>Increased cerebral maturation:58</td>
<td>1a</td>
</tr>
</tbody>
</table>

Neonates with a high concentration of DHA in umbilical plasma had longer gestational length and mature EEG on the second day of life than neonates with a low concentration.58

<table>
<thead>
<tr>
<th>Indication</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improves postnatal oxidative stress:59</td>
<td>1a</td>
</tr>
<tr>
<td>May reduce expression of allergic disease:59</td>
<td>1a</td>
</tr>
</tbody>
</table>

A randomized controlled trial of 83 pregnant atopic women showed that maternal supplementation with fish oil can attenuate neonatal lipid peroxidation, reduce postnatal oxidative stress, and reduce expression of allergic disease.59

<table>
<thead>
<tr>
<th>Indication</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improves mental processing and IQ:60</td>
<td>1a</td>
</tr>
</tbody>
</table>

A randomized controlled trial of 341 mothers showed that children who were born to mothers who had taken cod liver oil during pregnancy and lactation scored higher on the Mental Processing Composite at 4 years of age as compared with children whose mothers had taken corn oil.60 The children’s mental processing scores at 4 years of age correlated significantly with maternal intake of DHA and EPA during pregnancy.60
Levels in the mother correlate to newborn levels: Evidence level 1b

A cross-sectional study of 162 mothers found that omega-3 fatty acid intake by the mother was directly correlated to levels in the newborn. An outcome study of 23 healthy pregnant women found that children born to mothers supplemented with fish oil in the last trimester of pregnancy start with a better DHA status at birth, which may be beneficial to neonatal neurodevelopment.

Non-toxic: Evidence level 3
Non-genotoxic: Evidence level 3
Anti-mutagenic: Evidence level 3

DHA produced negative results in genotoxicity assays and demonstrated a low acute oral toxicity in mice and rats. EPA and DHA were shown to have anti-mutagenic activity in Chinese hamster cells. EPA and DHA were shown to have low toxicity in human leukemic cell lines.

Fish

Potential contamination: Evidence level 4

Fish may contain contaminants such as methylmercury, dioxins and polychlorinated biphenyls (PCBs), that are harmful to pregnant and nursing mothers. Although these safety concerns apply principally to fish meat, ensure that fish oil supplements do not contain methylmercury, dioxins, PCBs, and any other contaminants. Verify with manufacturer that there are laboratory reports indicating the absence of contaminants in their fish oil product.

Lactation

Minimal risk: Evidence level 1a

A double-blind randomized controlled study of 590 pregnant women (19–35 years) in weeks 17–19 of pregnancy showed that supplementation with fish oil did not adversely affect lactation.

Elevates milk DHA content: Evidence level 1a

A double-blind randomized controlled study of 590 pregnant women (19–35 years) in weeks 17–19 of pregnancy showed that breast milk of mothers supplemented with cod liver oil contained more omega-3 fatty acids than breast milk of mothers supplemented with corn oil. A study of eight lactating women showed that dietary intake of fish oil significantly elevated milk DHA content, which would elevate the newborns’ DHA intake. DHA is essential for brain, nervous tissue, and retinal development during the first year of life.
Improves mental development

Evidence level 1a

A randomized controlled trial of 56 newborns showed that early dietary supply of DHA was a major dietary determinant of improved performance on mental development indexes. A randomized controlled trial of 341 mothers showed that children who were born to mothers who had taken cod liver oil during pregnancy and lactation scored higher on the Mental Processing Composite at 4 years of age as compared with children whose mothers had taken corn oil.

Improves mental processing and IQ

Evidence level 1a

Improves visual acuity development

Evidence level 1a

A randomized controlled trial of 180 newborns showed that dietary DHA and arachidonic acid supplementation improved visual acuity development.

Improves mucosal immunity

Evidence level 1a

In a randomized controlled trial of 83 pregnant women, supplementation with fish oil during pregnancy significantly altered early post-partum breast milk fatty acid composition. Omega-3 fatty acid levels were positively associated with IgA and sCD14 levels, suggesting a relation between fatty acid status and mucosal immune function.

Use DHA in pre-term infants

Evidence level 1c

Blood samples of pre-term infants showed that a too-high supply of EPA in addition to DHA might be harmful to mental development.

Fish

Potential contamination

Evidence level 4

Fish may contain contaminants such as methylmercury, dioxins and polychlorinated biphenyls (PCBs), that are harmful to pregnant and nursing mothers. Although these safety concerns apply principally to fish meat, ensure that fish oil supplements do not contain methylmercury, dioxins, PCBs and any other contaminants. Verify with the manufacturer that there are laboratory reports indicating the absence of contaminants in their fish oil product.
SOY ISOFlavones

Soy isoflavones are heterocyclic phenols that are structurally similar to estradiol and to selective estrogen-receptor modulators (SERM). Soy isoflavones contain the isoflavone glucosides genistein and daidzein in their inactive conjugated forms.

Main indications

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyperlipidemia</td>
<td>B1</td>
</tr>
<tr>
<td>Menopausal symptoms</td>
<td>B1</td>
</tr>
<tr>
<td>Breast cancer prevention</td>
<td>C</td>
</tr>
</tbody>
</table>

Pregnancy

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weak estrogenic activity</td>
<td>1a</td>
</tr>
<tr>
<td>Increases sex hormone binding globulin (SHBG)</td>
<td>1b</td>
</tr>
</tbody>
</table>

A study on 18 post-menopausal women found that soy supplementation did not exert clinically important estrogenic effects on vaginal epithelium or endometrium. Another study of 84 pre-menopausal women found short-term dietary soy has a weak estrogenic response on the breast. A study on 20 post-menopausal women found that soy consumption significantly increased SHBG in subjects whose SHBG concentrations are in the low end of the concentration range.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potential allergen</td>
<td>1a</td>
</tr>
</tbody>
</table>

A randomized controlled trial of 288 pregnant women showed that a hypoallergenic diet, excluding allergens such as soy, during the third trimester of pregnancy and during lactation reduces food sensitization and allergy during the first year of life.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increased risk of hypospadias</td>
<td>1b</td>
</tr>
</tbody>
</table>

A prospective cohort study of 7928 boys born to mothers taking part in the Avon Longitudinal Study of Pregnancy and Childhood found that mothers who were vegetarian in pregnancy had higher odds of giving birth to a boy with hypospadias. The researchers concluded that these results support the possibility that phytoestrogens, such as soy and soy milk, may have a deleterious effect on the developing male reproductive system.

Conflicting evidence

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>May affect sexual development</td>
<td>3</td>
</tr>
</tbody>
</table>
Gestational and lactational exposure to genistein resulted in temporary, pre-pubertal urogenital abnormalities in male rats.83 Males exposed to genistein had smaller anogenital distance and testis size, and delayed preputial separation.83 Gestation and lactation exposure to genistein also caused long-term dysfunction in reproductive behavior, in which adult males exposed to genistein were less likely to mount, intromit, and ejaculate during mating tests.83 Males exposed to genistein also had lower testosterone concentrations in adulthood.83 In two other studies, gestational and lactational exposure of mice to genistein at human exposure levels did not induce adverse effects on sperm quality, changes in testicular gene expression or any adverse effects on the reproductive organs in mice at the human intake dose level.84,85

<table>
<thead>
<tr>
<th>Effect</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduces body weight:</td>
<td>3</td>
</tr>
<tr>
<td>Does not affect endocrine function:</td>
<td>3</td>
</tr>
</tbody>
</table>

In rats, genistein supplementation was shown to reduced body weight at week 11, but not to affect endocrine parameters.86

<table>
<thead>
<tr>
<th>Effect</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crosses the placenta:</td>
<td>3</td>
</tr>
</tbody>
</table>

In a study of human amniotic fluid following phytoestrogen ingestion, dietary phytoestrogens were quantified in 96.2\% of second trimester amniotic fluid samples tested.87 Second trimester amniotic fluid contained quantifiable levels of dietary phytoestrogens, including daidzein, genistein, formononetin, biochanin A, and coumestrol.87

<table>
<thead>
<tr>
<th>Effect</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>May affect progesterone receptor:</td>
<td>3</td>
</tr>
</tbody>
</table>

Genistein was found to increase progesterone receptor (PR) in the uterine glandular epithelium, where PR is essential for regulating key female reproductive processes, such as uterine proliferation, implantation, and maintenance of pregnancy.88 Increased PR expression suggests that genistein exposure during reproductive development may have long-term reproductive health consequences.88

Conflicting evidence

<table>
<thead>
<tr>
<th>Effect</th>
<th>Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>May increase or have a protective effect on mammary tumors:</td>
<td>3</td>
</tr>
</tbody>
</table>

Subcutaneous exposure to genistein, mimicking the effects of in utero estrogenic exposures, increased the incidence of mammary tumors in rats in a dose dependent manner, when compared with the controls.89 However, another study showed that administration of genistein in the perinatal period had protective effects against induced mammary carcinoma in rats.90
Food amounts

Minimal risk:91 Evidence level 4

According to the United States Food and Drug Administration (FDA), soy consumption in foods amounts presents minimal risk during pregnancy.91

Lactation

Conflicting evidence

May affect sexual development:82–85 Evidence level 3

Gestational and lactational exposure to genistein resulted in temporary, pre-pubertal urogenital abnormalities in male rats.83 Males exposed to genistein had smaller anogenital distance and testis size, and delayed preputial separation.83 Gestation and lactation exposure to genistein also caused long-term dysfunction in reproductive behavior, in which adult males exposed to genistein were less likely to mount, intromit, and ejaculate during mating tests.83 Males exposed to genistein also had lower testosterone concentrations in adulthood.83

In two other studies, gestational and lactational exposure of mice to genistein at human exposure levels did not induce adverse effects on sperm quality, changes in testicular gene expression or any adverse effects on the reproductive organs in mice at the human intake dose level.84,85

May or may not affect morphological changes in mammary glands:82,92 Evidence level 3

In one study, postnatal exposure to pharmacological levels of genistein induced profound morphological changes in the mammary glands of adult female rats, reflecting estrogenic activity.92 In another study, in utero and lactational exposure to genistein at levels comparable to or greater than human exposures did not adversely affect mammary gland development in pubertal female mice.82

Food amounts

Minimal risk:91 Evidence level 4

According to the United States Food and Drug Administration (FDA), soy consumption in foods amounts presents minimal risk during lactation.91
LACTOBACILLUS SPP.

Lactobacillus refers to a group of lactic acid-producing, Gram-positive rods that are obligate and facultative anaerobes. *Lactobacillus* species include *L. acidophilus*, *L. bulgaricus*, *L. casei rhamnosus*, *L. delbrueckii*, *L. fermentum*, *L. plantarum*, *L. reuteri*, *L. rhamnosus*, and *L. sporogenes*.

Main indications

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diarrhea</td>
<td>Evidence grade A</td>
</tr>
<tr>
<td>Atopic disease</td>
<td>Evidence grade B1</td>
</tr>
</tbody>
</table>

Pregnancy

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimal risk</td>
<td>Evidence level 1b</td>
</tr>
<tr>
<td>May reduce the risk of pre-term delivery</td>
<td>Evidence level 1b</td>
</tr>
<tr>
<td>Mother-to-newborn infant transmission</td>
<td>Evidence level 1c</td>
</tr>
</tbody>
</table>

A total of 32 women with bacterial vaginosis in the first trimester of pregnancy were treated with intravaginal application of yoghurt, which contains *Lactobacillus* spp. The yoghurt treatment restored the normal acidity and vaginal flora, without systemic effect to the mother or fetus.

A prospective study of the vaginal flora in the second trimester was undertaken in 1958 women with singleton pregnancies. Absence of lactobacilli was identified as an independent risk factor and as a predictor for pre-term delivery at <33 weeks of gestation. The study suggests that tests for determining the presence of vaginal lactobacilli may be clinically useful tools for identifying women at an increased risk of pre-term delivery at <33 weeks of gestation.

A study of 86 pregnant women tested for vaginal lactobacilli showed that approximately one-fourth of infants acquire vaginal lactobacilli from their mothers at birth, and that the acquired lactobacilli do not last in the intestine of the infant long-term, but rather, are replaced by ones from milk or unknown sources after birth. Six children whose mothers took supplementation with *Lactobacillus GG* during pregnancy showed temporary colonization of the gastrointestinal tract for as long as 6 months post delivery, and in some cases, as long as 24 months post delivery.

Lactobacillus GG (L. rhamnosus)

<table>
<thead>
<tr>
<th>Condition</th>
<th>Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimal risk</td>
<td>Evidence level 1a</td>
</tr>
</tbody>
</table>

A randomized controlled trial of 62 mother–infant pairs showed that administering probiotics to pregnant and lactating mothers increased the immunoprotective
potential of breast milk. The researchers observed that administering probiotics during pregnancy and lactation was safe and effective. Another randomized controlled trial was conducted on 132 mother–infant pairs where *Lactobacillus GG* was used with apparent safety in lactating women for up to six months.

Lactation

Lactobacillus GG (L. rhamnosus)

<table>
<thead>
<tr>
<th>Minimal risk:96,97</th>
<th>Evidence level 1a</th>
</tr>
</thead>
</table>
A randomized controlled trial of 62 mother–infant pairs showed that administering probiotics to pregnant and lactating mothers increased the immunoprotective potential of breast milk. The researchers observed that administering probiotics during pregnancy and lactation was safe and effective. Another randomized controlled trial was conducted on 132 mother–infant pairs where *Lactobacillus GG* was used with apparent safety in lactating women for up to 6 months.

References

Herbal medicines

INDEX

5-hydroxytryptophan (5–HTP) 331–2
abdominal pain 94
abortifacients 1, 3, 188, 227, 234, 334
Achillea millefolium 296–9
acne 67
nodulocystic 176
Aconitum napellus 220–2
Acorus calamus 60–2
acute cerebral infarction 261
acute otitis media 63, 141, 267
acute sinusitis 148
acute viral myocarditis 38
adaptogen 261
Aesculus hippocastanum 183–7
airway obstruction 90
alcohol glycoside 13
alcoholic liver cirrhosis 215
aldehyde glycoside 14
Aletris farinosa 49–50
alfalfa 25–8
alkaloids 10
allergic rhinitis 102, 277
Allium sativum 141–7
aloe 29–34
altitude sickness 156
Alzheimer’s disease 156, 204
Amanta phalloides mushroom poisoning 215
analgesic 220
anemia, sickle-cell 142
Angelica sinensis 94–7
angina pectoris 180
unstable 141
ankylosing spondylitis 334
anthocyanins 10–11
anthraquinones 11
anti-bacterials 81, 188, 296
anti-coagulant activity 296
anti-fungals 141, 188
anti-inflammatories 13, 30, 99, 281, 296
anti-inflammatory effects 86
anti-mycobacterial activity 188
anti-platelet aggregation 132, 141, 159, 193, 283
antioxidant activity 227
anxiety 192, 231, 267, 288
aphthous ulcers 208
appetite disorders 148
aquarctic 188
arthrosis 35–7
arthritis
osteoarthritis 176
pain 46
rheumatoid 55, 110, 141, 150, 176, 281
ashwagandha 35–7
aspirin, gastric mucosal damage 209
asthma 156
bronchial 29
asthmatic bronchoconstriction 102
astragalus 38–41
Astragalus membranaceus 38–41
atherosclerosis 25, 128, 141
prevention 55
atopic dermatitis 55
atopic dermatitis and eczema 110
atopic disease 342
Atropa belladonna 90–3
autonomic nervous system conditions 90
barberry 42–5
belladonna 90–3
benign prostatic hyperplasia 248, 277
Berberis aquifolium 223–6
Berberis vulgaris 42–5
biliary dyskinesia 281
black cohosh 46–8
blazing star 49–50
blood clotting
anti-coagulant activity 296
anti-platelet aggregation 141
vitamin K 310–13
blood sugar regulation 296
blue cohosh 51–4
borage 55–9
Borago officinalis 55–9
brain dysfunction, minimal 38
breast cancer 110, 128, 141
prevention 339
breast engorgement, lactation 334
breast pain (mastalgia) 67, 110, 128, 248
bromelain 334–5
bronchial asthma 29
bronchitis 156
chronic 197
bronchoconstriction, asthmatic 102
burns 63
calamus 60–2
calendula 63–6
Calendula officinalis 63–6
Camellia sinensis 169–75
cancer 35, 38
breast 110, 128, 141, 339
chemotherapy adjunct 156
chemotherapy-induced nausea/vomiting 150
chemotherapy side effects 38
colorectal 141
domestic 141
gastric cancer prevention 55, 141
hepatocellular carcinoma 215
prevention 29, 42, 55, 72, 141, 164, 169, 197,
215, 223, 281
prostate 128, 248
survival time 98
thyroid 141
treatment 141
cardiac glycosides 16
cardiovascular disease see heart disease
Cassia acutifolia; Cassia spp. 257–60
Caudophyllum thalictroides 51–4
cerebral infarction, acute 261
cerebral thrombosis 94
cerebrovascular insufficiency 156
Chamaelirium luteum 115–16
chastetree 67–71
chemotherapy adjunct 156
chemotherapy-induced nausea/vomiting 150
chemotherapy side effects 38
Chlamydia trachomatis eye infection 42, 164,
223
cholesterol, elevated 25, 29, 35, 141, 142, 169,
248
chronic bronchitis 197
chronic colitis 63, 117, 204, 267
chronic constipation 29
chronic fatigue syndrome 29
chronic hepatitis 38, 215, 296
chronic nephritis 38
chronic obstructive pulmonary disease (COPD) 94
chronic renal failure 38
chronic sinusitis 148
chronic venous insufficiency 183
chronic venous leg ulcers 29
chronic viral hepatitis C 215
Cimicifuga racemosa 46–8
cirrhosis 94, 215
alcoholic 215
diabetes mellitus-related 215
mortality 215
non-alcoholic 215
claudication, intermittent 156
Claviceps purpurea 253–6
coenzyme Q-10 333
Coffeea arabica 72–8
coffe 72–8
cognitive function 72, 156, 261
impairment, age-related 253
improvement 169, 197
mental alertness and performance, increase 72
cold, common 188, 197, 239
cold sores 204
colic, infant 117
colitis
chronic 63, 117, 204, 267
non-specific 86
colonic spasm, barium enema-related 239
colorectal cancer 141
Commiphora mukul 176–9
common cold 188, 197, 239
congestive heart failure 38, 42, 138, 164, 180,
223, 231, 333
cystitis 188
cysts, ovarian 220
daidzein 339–41
damiana 84–5
dandelion 86–9
databases, methodology 21
deadly nightshade 90–3
deglycyrrhizinated licorice (DGL) 208–14
dentist 316
depression 267, 331
dermatitis and eczema, atopic 110
dermatitis, atopic 55
DGL see deglycyrrhizinated licorice
DHA see docosahexaenoic acid
diabetes 25, 86, 110, 128, 141
diabetes mellitus-related cirrhosis 215
diabetes type 1; 121
diabetes type 2; 29, 35, 121, 197, 215
diabetic peripheral neuropathy 110
diarrhea 342
infectious 42, 164, 223
digestive complaints 117, 148
digestive stimulant 60
Digitalis lanata, D. purpurea 138–40
Dioscorea villosa 292–5
Index 351

diterpenoids 18
diuretic 86, 115, 188, 296
docosahexaenoic acid (DHA) 336–8
dong quai 94–7
drug-induced liver toxicity 215
duodenal ulcers 208
dyskinesia, biliary 281
dyspepsia 204, 215, 239, 281
echinacea 98–101
Echinacea angustifolia; Echinacea spp. 98–101
eeozma, atopic dermatitis and 110
edema, postoperative 183
eicosapentaenoic acid (EPA) 336–8
Eleutherococcus senticosus 261–4
emmenagogue 234
endometrial cancer 141
EPA see eicosapentaenoic acid
ephedra 102–9
Ephedra vulgaris; Ephedra spp. 102–9
erectile dysfunction 156, 197
essential oils see volatile oils
eugenol 20
evening primrose 110–14
Evidence-based practice, methodology 21–2
expectorant 156
eye
light-induced retinal damage 156
macular degeneration 156
trachoma 42, 164, 223
false unicorn 115–16
familial mediterranean fever 208
fatigue
chronic fatigue syndrome 29
post-viral fatigue syndrome 110
fatty acids, omega-3; 336–8
fenugreek 121–3
feverfew 124–7
fibrinolytica 29, 288, 331
fish oils 336–8
flavonoids 12
flax 128–37
Foeniculum vulgare 117–20
folic acid 314–15
foxglove 138–40
fungi
Amanita phalloides mushroom poisoning 215
anti-fungals 141, 188
anti-mycobacterial activity 188
gallbladder disease 72
gallstone prevention 281
gallstones 72
garlic 141–7
gastric cancer prevention 29, 55, 141
gastric mucosal damage by acetyl salicylic acid 209
gastric ulcers 208
genistein 339–41
gentian 148–9
Gentiana lutea 148–9
ginger 150–5
ginkgo 156–63
Ginkgo biloba 156–63
ginseng 16
korean ginseng 197–203
siberian ginseng 261–4
glossary, pharmacognosy 10–20
blood glucose 327–8
blood glucose 13
blood glucose 14
blood glucose 16
blood glucose 13
blood glucose 14
saponin glycoside 14
Glycyrrhiza glabra 208–14
goldenseal 164–8
green tea 169–75
guggul 176–9
hawthorn 180–2
hayfever 326, 329
HCSE see horse chestnut seed extract
headaches
migraine 90, 124, 253
tension 239
heart disease
angina pectoris 141, 180
atherosclerosis 25, 128, 141
atherosclerosis prevention 55
cardiovascular disease 180
cardiovascular disease prevention 169
congestive heart failure 38, 42, 138, 164, 180, 223, 231, 333
congestive heart failure 94, 128, 141, 180, 261, 288
myocardial infarction, post acute 38
myocarditis 261
myocarditis, viral, acute 38
prevention 336
Hedeoma pulegioides 234–8
Helicobacter pylori, anti- 42, 142, 164, 223
hematoma 183
hemolytic disease, vitamin K 310
hemophiliacs with HIV-1 208
hemorrhage, post-partum 253
hemorrhoids 183
hepatitis
chronic 38, 215, 296
rehabilitation 296
hepatitis B 86
hepatitis C 208
chronic viral 215
hepatitis, viral 208
hepatocellular carcinoma 215
Index

herbalism, defining 9
Herpes labialis 204
Herpes simplex 38, 261
Herpes zoster 208
HIV 38, 281, 303–4
HIV/AIDS 128
homeopathy 9
horse chestnut seed extract (HCSE) 183–7
Horsechestnut 183–7
HTP see 5-hydroxytryptophan
Hydrastis canadensis 164–8
hydrolyzable tannins 17
5-hydroxytryptophan (5-HTP) 331–2
hypercholesterolemia 25, 29, 35, 141, 142, 248
hyperemesis gravidarum 150
hyperglycemia 29
Hypericum perforatum 267–76
hyperkalemia 208
hyperlipidemia 55, 121, 128, 169, 176, 261, 281, 292, 336, 339
hyperprolactinemia 67
hypertension 29, 55, 128, 142, 333, 336
pregnancy-induced 110
pulmonary 94
hypertriglyceridemia 141
hypoglycemic 188
hypotension 102, 296
epidural block 102
spinal anaesthesia 102
idiopathic thrombocytopenic purpura 94, 208
immune stimulation 38
see also HIV
indigestion 208
infant colic 117
infertility 67
inflammation
anti-inflammatory 281, 296
anti-inflammatory effects 86
influenza 197
insomnia 288
intermittent claudication 156
irritable bowel syndrome 90, 239
isoflavones, soy 339–41
isoflavonoids 12–13
joint disorders 326
juniper 188–91
Juniperus communis 188–91
kava 192–6
kidney
chronic nephritis 38
lupus nephritis 128
renoprotective 188
knee osteoarthritis 327, 334
korean ginseng 16, 197–203
see also siberian ginseng
labor induction 46, 51, 244, 263
lactation
breast engorgement 334
increase 67
traditional botanical medicines 3–4
Lactobacillus spp. 342–3
lactones, sesquiterpene lactones 18–19
leg ulcers, chronic venous 29
lemon balm 204–7
leucopenia 38
radiation-associated 98
lichen planus, oral 208
licorice 208–14
light-induced retinal damage 156
lignans 14–15
Linum usitatissimum 128–37
liver disease
see also cirrhosis
fatty degeneration 215
hepatocellular carcinoma 215
toxicity-induced 215
liver protection 38, 169
liver toxicity
drug-induced 215
vitamin A 305
lupus nephritis 128
macular degeneration 156
malaria, chloroquine-resistant 42, 164, 223
mastalgia 67, 110, 128, 248
Medicago sativa 25–8
mediterranean fever, familial 208
Melissa officinalis 204–7
memory enhancement 197
healthy individuals 156
memory impairment, age-associated 156
meningitis, cryptococcal 141
menopausal symptoms 25, 46, 128, 248, 267, 292, 339
menopause, arterial compliance 248
menstrual complaints 49, 115
emmenagogue 234
premenstrual syndrome 67, 90, 94, 110, 156, 267
menstrual disorders 67
mental alertness and performance see cognitive function
Mentha piperita 239–43
Mentha pulegium 234–8
menthol 19
methodology 21–2
databases 21
evidence-based practice 21–2
harm evidence 22
indications evidence 22
methyl-sulfonyl-methane (MSM) 326
migraine headaches 90, 124, 253
milk thistle 215–19
Mitchella repens 265–6
monkshood 220–2
monoterpenoids 18
motion sickness 150
MSM see methyl-sulfonyl-methane
multiple sclerosis 110, 156
mushroom poisoning, Amanita phalloides 215
myocardial infarction, post acute 38
myocarditis 261
myocarditis, viral, acute 38
narcotic concealment 164
nausea/vomiting 150
chemotherapy-induced 150
motion sickness 150
postoperative 150, 239
pregnancy-induced 239
vitamin B6 316–18
neolignans 14–15
nephritis, chronic 38
nettle, stinging 277–80
neural tube defects, folic acid 314–15
neuralgia 220
non-hydrolyzable tannins 17–18

obesity 176
see also weight loss
obsessive compulsive disorder 267
Oenothera biennis 110–14
oils, fish 336–8
omega-3 fatty acids 336–8
opiate withdrawal 231
oral leukoplakia 169
oral lichen planus 208
Oregon grape 223–6
osteoarthritis 35, 176, 277, 281, 327, 334
knee 327, 334
osteoporosis 248
oritis media 90
acute 63, 141, 267
ovarian cysts 220
Panax ginseng, P. schinseng 16, 197–203
Parkinson disease, risk reduction 72
parkinsonism, prevention 169
parsley 227–30
parthenolide 18–19
Passiflora incarnata 231–3
passion flower 231–3
pennyroyal 234–8
peppermint 239–43
pptic ulcers 281
periodontal disease 79
periodontitis, adult 55
peripheral vascular disease 156
Petroselinum crispum, P. sativum 227–30
pharmacognosy 9–20
defining 9
glossary 10–20
phenol glycoside 14
pineapple 334–5
Piper methysticum 192–6
podophyllotoxin 15
post-viral fatigue syndrome 110
preeclampsia, pregnancy-induced 110
pregnancy, traditional botanical medicines 1–3
premature ejaculation 197
premenstrual syndrome 67, 90, 94, 110, 156, 267
prostate
benign prostatic hyperplasia 248, 277
cancer 128, 248
prostatitis 329–30
psoriasis 208, 223
pulmonary hypertension 94
quercetin 329–30
raspberry 244–7
Raynaud’s phenomenon 110
rectal cancer prevention 72
red clover 248–52
renal failure, chronic 38
renoprotective 188
respiratory tract infections, upper 42, 98, 141, 164, 223
retinal damage, light-induced 156
rheumatoid arthritis 55, 110, 141, 150, 176, 281
rhinitis, allergic 102, 277
Rubus idaeus 244–7
rye ergot 253–6
salicin 13
saponin glycoside 14
saponins 16
scabies 157, 281
seasonal affective disorder 267
sedation 288
senna 257–60
sesquiterpene lactones 18–19
sesquiterpenoids 18–19
sexual arousal, women 102
sexual dysfunction 84
antidepressant-induced 156
female 84
siberian ginseng 261–4
see also korean ginseng
sick-cell anemia 142
Silibum marianum 215–19
sinusitis
acute 148
chronic 148
skin inflammation 63
skin irritation 55
skin sores 157
sleep 204, 288
insomnia 288
soy isoflavones 339–41
squaw vine 265–6
St John’s wort 267–76
stinging nettle 277–80
stress 35, 55, 288
supplements 325–48

Index 353
Index

Tanacetum parthenium 124–7
tannins 16–18
hydrolyzable 17
non-hydrolyzable 17–18
Taraxacum officinale 86–9
tea, green tea 169–75
terpenes 18–19
terpenoids 18–19
tetraterpenoids 18
thrombocytopenic purpura, idiopathic 94, 208
thrombosis
cerebral 94
postoperative 183
thyroid cancer 141
tick repellant 141
Tinnitus 156
toxicity-induced liver disease 215
trachoma 42, 164, 223
traditional botanical medicines 1–8
contraception 1–3
lactation 3–4
pregnancy 1–3
Trifolium pratense 248–52
triglycerides, elevated 169
see also hyperlipidemia
Trigonella foenum-graecum, T. foenugraecum 121–3
triterpenoid saponins 16
triterpenoids 18
tuberculosis, anti-tubercular 164
tumors, solid 29
Turmeric 281–7
Turnera aphrodisiaca 84–5
ulcers
anti-ulcerogenic 204
aphthous 208
chronic venous leg ulcers 29
duodenal 208
gastric 208
peptic 281
upper respiratory tract infections 42, 98, 141, 164, 223
urinary tract disorders 60
urinary tract infections 79, 86
Urtica dioica, U. urens 277–80
uveitis 281
Vaccinium macrocarpon 79–83
Vaccinium oxyccocos 79–83
valerian 288–91
Valeriana officinalis 288–91
vascular disease, peripheral 156
venous insufficiency, chronic 183
vertigo 156
viral hepatitis 208
viral myocarditis, acute 38
vitamin A 302–5
HIV 303–4
liver toxicity 305
retinoic acid 303
vitamin B3 316–18
dental decay 316
nausea/vomiting 316–18
vitamin D 306–7
vitamin E 308–9
vitamin K 310–13
blood clotting 310–13
hemolytic disease 310
vitamins 301–24
folic acid 314–15
Vitex agnus-castus 67–71
volatile oils 19–20
vomiting/vomiting see nausea/vomiting
weight loss 84, 102
obesity 176
wild yam 292–5
Withania somnifera 35–7
wound healing 63
yam, wild 292–5
yarrow 296–9
Zingiber officinalis 150–5
SAFETY SCALE

<table>
<thead>
<tr>
<th>Pregnancy safety scale</th>
<th>Lactation safety scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safe</td>
<td>Safe</td>
</tr>
<tr>
<td>Caution</td>
<td>Caution</td>
</tr>
<tr>
<td>Unsafe</td>
<td>Unsafe</td>
</tr>
<tr>
<td>Unknown</td>
<td>Unknown</td>
</tr>
</tbody>
</table>

HERBAL MEDICINES

<table>
<thead>
<tr>
<th>Aconite</th>
<th>Alfalfa</th>
<th>Aloe</th>
<th>Ashwaghanda</th>
<th>Astragalus</th>
<th>Barberry</th>
<th>Black Cohosh</th>
<th>Blazing Star</th>
<th>Blue Cohosh</th>
<th>Borage</th>
<th>Calamus</th>
<th>Calendula</th>
<th>Chastetree</th>
<th>Coffee</th>
<th>Cranberry</th>
<th>Damiana</th>
<th>Dandelion</th>
<th>Deadly nightshade</th>
<th>Dong quai</th>
<th>Echinacea</th>
<th>Ephedra</th>
</tr>
</thead>
<tbody>
<tr>
<td>------------------</td>
<td>---------------</td>
<td>-------</td>
<td>-----------</td>
<td>----------</td>
<td>------</td>
<td>----------</td>
<td>--------</td>
<td>---------</td>
<td>--------</td>
<td>-------</td>
<td>------------</td>
<td>-----------</td>
<td>-------</td>
<td>-----------</td>
<td>-------------</td>
<td>---------</td>
<td>-----</td>
<td>----------------</td>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
SAFETY SCALE

<table>
<thead>
<tr>
<th>Pregnancy safety scale</th>
<th>Lactation safety scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safe</td>
<td>Safe</td>
</tr>
<tr>
<td>Caution</td>
<td>Caution</td>
</tr>
<tr>
<td>Unsafe</td>
<td>Unsafe</td>
</tr>
<tr>
<td>Unknown</td>
<td>Unknown</td>
</tr>
</tbody>
</table>

HERBAL MEDICINES cont.

<table>
<thead>
<tr>
<th>Rye ergot</th>
<th>Senna</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siberian ginseng</td>
<td>Squaw vine</td>
</tr>
<tr>
<td>St John’s wort</td>
<td>Turmeric</td>
</tr>
<tr>
<td>Valerian</td>
<td>Wild yam</td>
</tr>
<tr>
<td>Yarrow</td>
<td></td>
</tr>
</tbody>
</table>
VITAMINS
- Vitamin A
- Vitamin D
- Vitamin E
- Vitamin K
- Folic acid
- Vitamin B6

SUPPLEMENTS
- MSM
- Glucosamine sulphate
- Quercetin
- 5-HTP
- Co Q10
- Bromelain
- Fish oils
- Soy isoflavones
- Lactobacillus sp.
Herbal Medicines in Pregnancy & Lactation

The use of natural health products is on the rise. Just as with prescription drugs, natural health products can present substantial risks during pregnancy and breast-feeding. All the same categories of concern exist, including potential abortives, drug interactions and alteration of drug absorption and metabolism. Some of these effects may be life-threatening and yet the current literature is scant on these important issues.

Physicians require quality evidence with which to make evidence-based decisions and provide answers to their patients. Herbal Medicines in Pregnancy and Lactation: An Evidence-Based Approach focuses entirely on the therapeutics, safety and risk information of herbs and supplements used during pregnancy and lactation. The book will be an indispensable guide for obstetricians, maternal-fetal medicine specialists, primary care physicians, and midwives.

The book is organized by section categories—mirroring standard works on the safety profiles of drugs— including benefit-profile and traditional uses, pharmacology and toxicology, interactions, and adverse events. Each natural health product has been researched using a systematic review method, so that a busy clinician can quickly view the grade of evidence to support the information provided.

Authors
Edward Mills DPH MSc (Oxon) is Director of Research, Division of Clinical Epidemiology at the Canadian College of Naturopathic Medicine, Toronto, Canada
Jean-Jacques Dugoua MSc (cand.) ND is a Naturopathic Doctor at the Toronto Western Hospital and Assistant Professor, Division of Clinical Epidemiology at the Canadian College of Naturopathic Medicine, Toronto, Canada
Dan Perri BScPharm MD MSc is Clinical Pharmacology Fellow, University of Toronto, Canada
Gideon Koren MD FACMT FRCP is Director of Motherisk and Professor of Medicine, Pediatrics and Pharmacology at the University of Toronto, Canada

Also Available